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We consider the critical behavior at the threshold of black-hole formation for the five-dimensional
vacuum Einstein equations satisfying the cohomogeneity-two triaxial Bianchi type-IX ansatz. Exploiting
a discrete symmetry present in this model we predict the existence of a codimension-two attractor. This
prediction is confirmed numerically and the codimension-two attractor is identified as a discretely self-
similar solution with two unstable modes.
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Introduction.—Since the pioneering work of Choptuik
on the collapse of a self-gravitating scalar field [1], the
nature of the boundary between dispersion and black-hole
formation in gravitational collapse has been a very active
research area (see [2] for a review). One of the most
intriguing aspects of these studies is the occurrence of
discretely self-similar critical solutions. Discrete self-
similarity (DSS) means invariance under rescalings of
space and time variables by a constant factor e�, where
� is a number, usually called the echoing period. Critical
solutions possessing this curious symmetry (with different
echoing periods) have been found for several self-
gravitating matter models (massless scalar field [1],
Yang-Mills field [3], the � model [4], and a few others)
and recently also in vacuum gravitational collapse in
higher dimensions [5,6].

Our current understanding of DSS solutions is very
limited in comparison with continuously self-similar
(CSS) solutions. In the case of spherical symmetry the
CSS ansatz leads to a system of ordinary differential
equations which can be handled analytically, and some-
times even rigorous proofs of its existence are feasible. For
example, the existence of a countable family of CSS
solutions was proved in the Einstein-sigma model [7] and
the ground state of this family was identified as the critical
solution (which was known previously from numerical
studies of critical collapse). In contrast, the DSS ansatz
leads to a 1� 1-dimensional eigenvalue problem which
seems intractable analytically. Although this eigenvalue
problem can be solved numerically, as was done by
Gundlach for two models (scalar field [8] and Yang-Mills
[9]), the numerical iterative procedure requires a good
initial seed in order to converge. Thus, Gundlach’s method
is efficient in validating and refining DSS solutions which
are already known from direct numerical simulations, but it
is not useful in searching for new solutions.

In this Letter we consider the critical collapse for the
five-dimensional vacuum Einstein equations satisfying the
cohomogeneity-two triaxial Bianchi type-IX ansatz and

provide heuristic arguments and numerical evidence for
the existence of a DSS solution with two unstable modes.
This is a continuation of our studies in [5] where we have
shown the existence of a critical DSS solution with one
unstable mode and the associated type-II critical behavior
in this model. On the basis of our result it is tempting to
conjecture that the critical DSS solution is a ground state of
a countable family of DSS solutions with an increasing
number of unstable modes.

Background.—Our starting point is the cohomogeneity-
two symmetry reduction of the Einstein equations in five
dimensions, which is based on the following ansatz intro-
duced by us in [5]:
 

ds2 � �Ae�2�dt2 � A�1dr2

� 1
4r

2�e2B�2
1 � e

2C�2
2 � e

�2�B�C��2
3�; (1)

where A, �, B, and C are functions of time t and radius r.
The angular part of (1) is the SU�2�-invariant homogene-
ous metric on the squashed three-sphere with �k being
standard left-invariant one-forms on SU�2�:
 

�1 � i�2 � ei �cos�d�� id��;

�3 � d � sin�d�;
(2)

where 0 � � � �, 0 � � � 2�, 0 �  � 4� are the
Euler angles. The squashing modes, B and C, play the
role of dynamical degrees of freedom. This ansatz provides
a simple 1� 1-dimensional framework for investigating
the dynamics of gravitational collapse in vacuum. In [5] we
made a simplifying assumption that B � C, which means
that the ansatz (1) has an additional U�1� symmetry and
only one dynamical degree of freedom (the so-called bi-
axial case). In this Letter we drop this assumption and
consider the full triaxial case with two dynamical degrees
of freedom.

Substituting the ansatz (1) into the vacuum Einstein
equations in five dimensions and using the mass function
m�t; r�, defined by A � 1�m=r2, we get the following
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system:
 

m0 �2r3�e2�A�1� _B2� _C2� _B _C�

�A�B02�C02�B0C0��� 2
3r�3�e

4B�e4C

�2e�2B�2e�2C�2e2�B�C� �e�4�B�C��;

(3a)

_m� 2
3r

3A� _CB0 � _BC0 �2 _BB0 �2 _CC0�; (3b)

�0 ��2
3r�e

2�A�2� _B2� _C2� _B _C��B02

�C02�B0C0�; (3c)

�e�A�1r3 _B�	 � �e��Ar3B0�0� 4
3e
��r�2e4B�2e�2B

�e2�B�C� �e�4�B�C��e4C�e�2C�; (3d)

�e�A�1r3 _C�	 � �e��Ar3C0�0� 4
3e
��r�2e4C�2e�2C

�e2�B�C� �e�4�B�C��e4B�e�2B�; (3e)

where primes and overdots denote derivatives with respect
to r and t, respectively.

If B � C � 0, then the ansatz (1) reduces to the standard
spherically symmetric metric for which the Birkhoff theo-
rem applies and the only solutions are Minkowski (� � 0,
m � 0) and Schwarzschild (� � 0, m � const> 0). We
showed in the biaxial case [5] that these two static solutions
play the role of attractors in the evolution of generic regular
initial data (small and large ones, respectively). We have
verified that this property remains true in the triaxial case
(see also [10]). Note that equations for small perturbations
�B and �C around the Minkowski and Schwarzschild
solutions decouple, hence linear stability results and the
decay rates discussed in [5] carry over without any
changes.

Heuristics.—Below we focus on initial data on a border-
line between dispersion and collapse. Our preliminary
studies of the evolution of such data suggested that the
relaxation of symmetry from biaxial to triaxial does not
change the phenomenology of critical behavior observed in
[5]; that is, we have found our old biaxial DSS solution
(hereafter referred to as the DSS1) as the critical solution.
In other words the biaxial symmetry seems to be recovered
dynamically not only for generic initial data but also for the
critical ones (see Fig. 1). The mechanism of this nonlinear
synchronization phenomenon is an open problem which
we hope to pursue elsewhere. Here we take it as a fact and
use it as the starting point in further discussion.

The second key element of our argument is the fact that
the system (3) possesses a discrete Z3 symmetry which
corresponds to the freedom of permutations of coefficients
of one-forms �k in the angular part of the metric (1). These
permutations are generated by the following transposi-
tions:
 

T12: �B;C� ! �C;B�; T23: �B;C� ! �B;�B� C�;

T13: �B;C� ! ��B� C;C�; (4)

where the transposition Tij swaps the coefficients of�2
i and

�2
j in (1). Biaxial configurations correspond to the fixed

points of these transpositions: �B;B�, �B;�B=2�, and
�B;�2B�.

Thus, each biaxial solution, in particular, the DSS1,
exists in three different but geometrically equivalent cop-
ies. Let Mcrit denote the codimension-one critical surface
in the phase space which separates dispersion from col-
lapse and let Mi (i � 1; 2; 3) denote the basins of attrac-
tion of three symmetry-related copies of the DSS1 solution.
Since Mi lie in Mcrit and Mcrit is connected, there should
exist codimension-two boundaries that separate different
Mi from each other. It is natural to expect that these
boundaries are given by the stable manifolds of three
symmetry-related copies of a solution with two unstable
modes. In the next section, we confirm this picture numeri-
cally and demonstrate that the codimension-two attractor is
discretely self-similar.

Numerics.—In order to find a codimension-two attractor
predicted above, we consider the two-parameter family of
time-symmetric initial data of the form

 B�0; r� � pf�r�; C�0; r� � aB�0; r�; (5)

where f�r� is a smooth localized function satisfying regu-
larity conditions at r � 0. The results presented below
were produced for the generalized Gaussian f�r� �
100r2 exp��20�r� 0:1�2�. We pick some value of the
parameter a and then, using bisection, we fine-tune the
parameter p to the critical value p
�a�. We are interested in
how the phenomenology of critical behavior depends on a.
There are three distinguished values of awhich correspond
to three biaxial configurations: a � 1, a � �1=2, or a �
�2. Since biaxiality is preserved during evolution, for
these special initial data we obviously find our old DSS1

as the critical solution [note that the corresponding critical
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FIG. 1. Snapshots of the evolution of near-critical initial data
of the form (5) for a � 1=2. In the last frame the squashing
modes become synchronized and the solution coincides with the
DSS1.
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values of p are related by the symmetry (4) p
��1=2� �
�2p
�1� and p
��2� � p
�1�, which provides a useful test
of the accuracy of numerics]. As we have already men-
tioned, numerical studies of critical collapse indicate that
for other (generic) values of the parameter a the DSS1

solution, modulo the Z3 symmetry, also acts as an attractor.
Let us denote by X�1�1 , X�1�2 , and X�1�3 the three copies of the
DSS1 solution, corresponding to a � 1, a � �1=2, and
a � �2, respectively. Below we focus our attention onX�1�1

and X�1�2 . By continuity, the solution X�1�1 is the attractor for
the values of a close to 1 and the solution X�1�2 is the
attractor for the values of a close to �1=2. Thus, in the
interval�1=2< a< 1 there must exist at least one critical
value a
 such that the critical initial data (5) corresponding
to a
 � � (for a sufficiently small �) evolve to the different
copies X�1�1 and X�1�2 . As usual, this critical value a
 can be
determined by bisection [11]. We shall refer to initial data
with parameters �a
; p
�a
�� as double critical. In Fig. 2 we
show the evolution of near double critical initial data. The
key new feature which is apparent in Fig. 2 (in contrast to
Fig. 1) is the occurrence of another intermediate attractor
around which the solution hangs for a while before ap-
proaching the DSS1 attractor. We find that the new attractor
is discretely self-similar with the echoing period �2 �
0:395 (see Fig. 3). We call this solution the DSS2 and
denote it by X�2�.

The behavior seen if Fig. 2 has a natural explanation
within the heuristic picture sketched above. According to
this picture the DSS2 has two unstable modes, one tangen-
tial and one transversal to the critical surface. During the
DSS2 intermediate regime the departure from X�2� is well
approximated by a linear combination of two unstable
modes:

 �X�2� � c1�a; p�e
��2�1 �f1�	; �� � c2�a; p�e

��2�2 �f2�	; ��;

(6)

where 	 � r=�T � t� and � � � ln�T � t� are the similar-
ity variables (T is the blowup time of the DSS2), fi�	; ��
are the eigenfunctions (periodic in � with the period �2),
and ��2�i > 0 are the respective eigenvalues. The coeffi-
cients ci are the only vestige of initial data. Given a close
to a
, for the perfect fine-tuning of p to its critical value,
the transversal unstable mode (let it be f1) is completely
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FIG. 2. Snapshots of the evolution of near double critical
initial data (a � 0:1411 . . . , p � 0:0952 . . . ). The new
(codimension-two) intermediate attractor (DSS2) is seen in the
second frame. The departure from this attractor (proceeding
from the origin) and the approach to the old (codimension-
one) intermediate attractor (X�1�1 copy of the DSS1) in seen in
the third frame. In the last frame the DSS1 regime is well
developed near the origin while the DSS2 regime is still visible
for large r. To produce this figure we had to fine-tune p to the
critical value with a relative accuracy of 10�26 (using quadruple
precision arithmetics).
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FIG. 3. (a) Evidence for discrete self-similarity of the
codimension-two attractor. We plot the mode B at some central
proper time T0 during the intermediate regime shown in the
second frame in Fig. 2 and superimpose the next four echoes
which subsequently develop. (b) The close-up of the DSS2

solution. It is evident that this solution is not biaxial. Note that
the mode C oscillates with twice the frequency of the mode B.
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suppressed, that is, c1�a; p

�a�� � 0. In practice, we can

fine-tune p with very high precision so that c1�a; p�a�� is
almost zero. For such data, c1  c2, hence after several
cycles the solution leaves the DSS2 along the tangential
unstable direction and then, after a short transient period,
approaches one of the copies X�1�1 or X�1�2 (depending on the
sign of c2) of the DSS1. Afterwards the solution stays near
DSS1 for some time and eventually moves away from the
critical surface Mcrit towards collapse or dispersion.

The existence of the DSS2 solution has an interesting
consequence for the black-hole mass scaling law, MBH �
�p� p
�
, associated with the type-II critical collapse.
Consider a near-critical value a and monitor the black-
hole mass over a wide range of supercritical values p >
p
�a�. As we have discussed above, for p very close to the
threshold the solution moves away from the critical surface
along the unstable mode of the DSS1. However, as p� p


increases, we observe a competition between the transver-
sal and the tangential modes of the DSS2. Far from the
threshold the transversal mode becomes dominant (c1 �
c2), which means that the solution moves away from the
critical surface along the transversal unstable direction of
the DSS2 and never approaches the DSS1. According to the
well-known argument from dimensional analysis [2], the
scaling exponent 
 is related to the eigenvalue � of the
unstable mode along which the solution is ejected towards
collapse: 
 � 2=� (the factor of 2 comes from the fact that
in five dimensions mass has dimension length2). Thus, for
near double critical initial data the mass scaling law is
expected to exhibit the crossover from the exponent 
1 �

2=��1� (where ��1� is the eigenvalue of the single unstable
mode of the DSS1) for small p� p
 to 
2 � 2=��2�1 for
relatively large p� p
 (see Fig. 4 for the numerical con-
firmation of this prediction). Using this relationship and the
numerically determined 
2 we estimate that ��2�1 � 6:67.
The second eigenvalue ��2�2 associated with the tangential
unstable mode of the DSS2 can be obtained from the
relationship ��2�2 �2�n � ���, where �n and �� are the
changes in the echo number n and � � lnjp� p
j. Fitting
this formula to numerical data we obtain ��2�2 � 6:03.

We remark that the heuristic argument for the existence
of a codimension-two attractor presented in this Letter can
be applied repeatedly to argue for the existence of higher
codimension attractors [12]; however, the numerical search
for these solutions via multiparameter fine-tuning would be
extremely difficult.
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FIG. 4. The black-hole mass scaling law for near double
critical initial data. The linear fit yields different slopes for small
and large distances from the threshold.
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