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We study the development of singularities for the spherically symmetric Yang-Mills equations in
(d+1)-dimensional Minkowski spacetime fdr=4 (the critical dimensionandd=5 (the lowest supercritical
dimension. Using combined numerical and analytical methods we show in both cases that generic solutions
starting with sufficiently large initial data blow up in finite time. The mechanism of singularity formation
depends on the dimension: oh=5 the blowup is exactly self-similar while id=4 the blowup is only
approximately self-similar and can be viewed as the adiabatic shrinking of the marginally stable static solution.
The threshold for blowup and the connection with critical phenomena in the gravitational colfleipist
motivated this researghare also briefly discussed.
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I. INTRODUCTION singularity formation is due to concentration of energy and
has the form of adiabatic shrinking of the marginally stable
The Yang-Mills(YM) equations are the basic equations of static solution.
gauge theories describing the fundamental forces of nature so Higher dimensionsd>4) appear to be somewhat under-
understanding their solutions is the issue of great importanc@xplored; the only result we are aware of is the proof of
This is not an easy task since, in contrast with Maxwell'sexistence of self-similar solutions oi=5,7,9[5]. These so-
equations or the Schdinger equation, the YM equations are lutions provide examples of singularities developing from
nonlinear, which opens up the possibility that solutionssmooth initial data, however nothing was known about their
which are initially smooth become singular in the future.genericity and stability. Here we restrict ourselves to the
Actually such a spontaneous breakdown of the solutions of 5 case because of its connection with Einstein’s equations.
YM equations cannot occur in the physical We first show that the example of self-similar blowup given
(3+1)-dimensional Minkowski spacetime as was shown inin [5] is in fact generic. Then we look at the threshold for
a classic paper by Eardley and Moncrigf who proved that  singularity formation and observe a behavior similar to the
solutions starting from smooth initial data remain smooth forcritical behavior in gravitational collapg®] (with blowup
all future times. A natural question is: how the property ofbeing the analog of a black hglein particular we find a
global regularity depends on the dimension of the underlyingself-similar solution with one instability as the critical solu-
spacetime, in particular, can singularities developdih 1 tion.
dimensions ford>3? We hope that our paper is a step to- We remark in passing that there are close parallels be-
wards answering this question. As we argue below, the progween YM equations i+ 1 dimensions and wave maps in
lem of singularity formation for YM equations in higher di- (d—2)+1 dimensiong5]. Indeed, many of the phenomena
mensions is not only interesting in its own right but in described below have been previously observed by us for the
addition, it sheds some light onto our understanding of Einequivariant wave maps into spheres in tw¢ and threq 8]
stein’s equations in thphysicaldimension. spatial dimensions.
Despite intensive research the problem of global regular-

ity for YM equations in 4+1 dimensions is entirely open
[2]. A lot of progress has been accomplished in proving local Il. SETUP
_existence for “rou_gh" initial data, yet the_ attempts of prov-  \we consider Yang-Mills fields in d+ 1)-dimensional
ing global regularity for small energy initial data by estab- \inkowski spacetimdin the following Latin and Greek in-
|IShI.I"Ig local well—posﬂedngss in the energy norm fail 10 4jces take the values 1.2..d and 0,1,2... d respec-
achieve the goal by “epsilonf3] (nota benesuch a local ey The gauge potentia, is a one form with values in
p_roof of global existence _has been obtained i13dimen- i Lie algebrag of a compact Lie groufs. Here we take
sions [_4], there_by improving the theorem (_)f Ea_rdley _and G=50(d) so the elements aj=so(d) can be considered as
Moncrief). In this paper we report on numerical simulations g e\ symmetricdx d matrices and the Lie bracket is the
which in combination with analytic results strongly suggest,,s.al commutator. In terms of the Curvatufg, 5= d,A 5

that gengric_s.olutilons with sufficiently_large energy do in fact_ d5A.+€[A, Azl the Yang-Mills equations are
blow up in finite time. Hence, we believe that the smallness

condition in the optimal local well-posedness result is not a
technical shortcoming but is indispensable. We show that the d,F*P+eA, F*P]=0, @
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wheree s the gauge coupling constant. It is customary to setvave has nothing to do with singularity formation so we
e=1 and we shall also do so in the following. However, it is shall ignore it in what follows. The behavior of the ingoing
worth remembering thge?]=M ~1L%* (in c=1 unit9; in  wave depends on the amplitude For small amplitudes the
particular,e? has the same dimension =5 as Newton’s ingoing wave approaches the center, reaches a minimal ra-
constantG in d=3. dius, bounces back and then disperses to infinity leaving be-
The YM equations(1) are scale invariant: iA,(x) is a  hind an empty space. For large amplitudes the ingoing wave
solution, so isA(x)=\"1A,(x/\). The conserved energy KEeps concentrating near the center and eventually blows up
in finite time. As the blowup tim€l is approached we ob-
_ ) 21 1d serve the development of a rapidly evolving inner region
EA) = JRdTr(F0i+FiJ)d X (2} which is clearly separated from an almost frozen outer re-
gion. The inner solution attains a kinklike shape which
scales as£(A)=\9"%&(A), thus in the partial differential shrinks in a self-similar manner
equationgPDE) terminology the YM equations are subcriti-
cal ford=3, critical ford=4, and supercritical fod=5. It
is believed that subcritical equations are globally regular be-
cause energy conservation rules out concentration of solu-
tions on arbitrarily small scales. On the contrary, for superwhere the profiléV depends on the dimension but otherwise
critical equations concentration might be energeticallyseems universal. The scal¢t) goes to zero as— T which
favorable and consequently singularities are expected to osignals blowup since the second derivativi#w(t,0)
cur. The critical equations provide an interesting borderline=W"(0)\ ~?(t) becomes unbounddthere is no blowup of

w(t,r)=~W(nz), (6

T
W—W,

case. the first derivative becausé/’(0)=0, as we shall see be-
We assume the spherically symmetric angafz low).
The subsequent discussion of the details of blowup has to
i P Imw(tr) be given separately in each dimension. We begin with the
ij — (S i Sl oyl N .
Aa(X)=(8,X = 8eX) iz (3 easier supercritical case.
wherer = \x2. Then, the YM equationgl) reduce to the d=5

scalar semilinear wave equation for the magnetic gauge po-

tential w(t,r), In this case the scale changes linearly, thah{$)=T

—t, as one would expect from dimensional analysis. The
d—2 blowup profile is given by the exact self-similar solution of

W= A (g- W+ r—zw(l—wz)zo, (4 Ea.4

1

whereA y_z=d2+[(d—3)/r]a, is the radial Laplacian in W=Wo(7)= i T ()
d—2 dimensions. We solve numerically the initial value 57
problem for the above equation @4 and 5. Our simula-
tions were performed using finite-difference methods com
bined with adaptive mesh refinement. The latter was esse
tial in resolving the structure of singularities developing on
very small scales. To ensure regularity at the center we re:

The solutionW, was proved to exist if5] and recently
found in closed form by one of uklO]. This solution is

2 T T T T T T T

2.76E-4

quire thatw(t,0)=1+0(r?). At the outer boundary of the 15|
computational grid we impose the outgoing wave condition.
Below we present results for the time-symmetric Gaussian 1
initial data of the form 05
won=1-Arfexf —o(r—-R)?], w(0r)=0, 5 S o 1 BSE-2
2

- 3.06E-7

with adjustable amplitud@ and fixed parameters= 10 and 05|

3.84E-10
R=2. We have obtained the same qualitative results for sev- N 7.93E-13
eral other families of initial data so we believe that the phe- i |
nomena described here are generic. A5k N
_2 1 1 1 1 1 1 1
. RESULTS 40 35 30 25 =20 -5 10 5 0

We begin our description in a unified dimension- In{)

independent manner; all statements which do not explicitly F|G. 1. Blowup ind=5. The plot shows the late time evolution

involve the dimension apply both =4 andd=5. Since  of large initial data A=0.2). As the blowup progresses, the inner
our data are time symmetric, the initial profile splits into solution gradually attains the form of the stable self-similar solution
ingoing and outgoing waves. The evolution of the outgoingw,(r/(T—t)). The outer solution appears frozen on this timescale.
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FIG. 2. The critical behavior ird=5. The rescaled solution
w(t,(T—t)r) is plotted against Imj for a sequence of intermediate
times. Shown(solid and dashed lingss the pair of solutions start-
ing with marginally critical amplitudesA=A* *¢, where A*
=0.144296087005405. Sinee= 1015, the two solutions are indis-

tinguishable on the first seven frames. The convergence to the self- P
similar solutionW; (dotted ling is clearly seen in the intermediate éenvalue of the unstable mod&0]. This implies that the

asymptotics. The last two frames show the solutions departing frorrt1ime of departure from the intermediate affractor, caify
: cales asT—t*~|A* — A|Y® Various scaling laws can be

the intermediate attractor towards blowup and dispersion, respec:~". . . . :
tively. derived from this. For example, consider solutions with mar-

ginally subcritical amplitude#\=A* — €. For such solutions

linearly stable[10] (apart from the instability corresponding the energy density
to shifting the blowup timgwhich supports the fact that we
see it as a generic attractor without tuning any parameters of
initial data(see Fig. 1

We think that the basic mechanism which is responsible
for the observed asymptotic self-similarity of blowup can beinitially grows at the center, attains a maximum at a certain
viewed as the convergence to the lowest “energy” configu-time t,,, and then drops to zero. An elementary dimensional
ration. To see this, note that rewriting B¢) in terms of the  analysis based on the above scaling predicts the power law
similarity variable » and the slow timer=—In(T—t) one  p(t,.,0)~e #°. We have verified this prediction in our
can convert the problem of blowup into the problem of simulations(with 4% erro.
asymptotic behavior of solutions for—c. The point is that We point out that the threshold behavior described above
in these variables the wave equation contains a damping terghares many features with critical phenomena at the thresh-
which simply reflects the presence of an outward flux ofold for black hole formation in the gravitational collag€a.
energy through the past light cone of the singularity. Hence itrhis fact, together with similar results for wave maps in 3
is natural to expect that solutions will tend asymptotically to+ 1 dimensiong8,11] (and other systemgl3]), shows that
the least “energy” equilibrium state, which is nothing else the basic properties of critical collapse, such as universality,
but Wp. scaling, and self-similarity, originally observed for Einstein’s

It was shown in{10] that W, is actually the ground state equations, actually have nothing to do with gravity and seem

of a countable family of self-similar solution¥/, (n  to be robust properties of supercritical evolutionary PDES.
=0,1,...) of Eq.(4). All n>0 solutions are unstable and

FIG. 3. Blowup ind=4. The plot shows the late time evolution
of large initial data A=0.5). The inner solution has the form of the
scale-evolving static solutiowg(r/A(t)) with the scalex (t) going
to zero slightly faster than linearly.

2 2 2\2

t, W 3(1-w)

tr)=—+—+—
p(LT) rz r? 2r4

®

therefore not observed in the evolution of generic initial data. d=4
However, they may show up in the evolution of specially ] ] o
prepared initial data. The solutiow; with one unstable In this case Eq(4) does not admit regular self-similar

mode is particularly interesting since it appears as a transief@lutions, so the numerically observed self-similarity can be
metastable state in the evolution of initial data tuned to theé®nly approximate. We identify the blowup profile as the
threshold for blowup. This indicates tha, is a critical ~ Scale-evolvingstatic solution(see Fig. 3
solution whose codimension-one stable manifold separates )
blowup from dispersiorisee Fig. 2 W=Wq(7)= 1-7 = o ©)

Let A* be the critical amplitude corresponding to the s 1+ 5% NGE
threshold. For initial data with amplitudes neéf, in the
intermediate asymptotics where the solution is approximatetiVe call this solution static because for afixed \ it is the
by W, the amplitude of the unstable mode abdM{ is  time-independent solution of E¢4) (this solution is perhaps
proportional to A* —A)(T—t)~” wherey=5 (!) is the ei-  better known as the YM instanton in four Euclidean dimen-
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sions. Since the energy does not dependxnthese solu-  |im, .+ &(t)=0, hence no energy gets concentrated into the
tions are only marginally stable; when kicked they shrink orsingularity. In contrast, fod= 4, substituting Eq(9) into Eq.
expand. In other words the blowup can be viewed as thg12) and using Eq(10) we obtain

adiabatic shrinking of the static solution. Numerical evidence

suggests that the rate of blowup goes asymptotically to zero, L[ , (1_\/\@2 )
that IS(:d/dt) lim g(t)=677 f W,S +—2 rdr=16mw s
t—T 0 r
N . . !
lim —— = —lim A=0. (10 thus the energy equal to the energy of the static solufign
ot Tt t—-T concentrates at the singularity. Note that only the potential

o ) energy becomes concentrated; the Kkinetic energy tends
Although we are not able to explain this fact, we point outgsymptotically to zero. In fact, in our simulations we can see
that it seems necessary for the consistency of the quasi-stafife excess energy being slowly radiated away from the inner
character of blowug9). To see this, substitute the anséz  region as the blowup profile converges to the static solution.

into Eq. (4) to obtain To summarize, our work provides numerical evidence that
N . o W solutions of YM equations in four and five spatial dimen-
(LN )W +[1+ (NN =27\ n ]7 sions do form singularities from generic smooth large initial

data. While the self-similar character of blowupds=5 is
well understoodat least from the numerical perspecdivihe
+—W(1-W?)=0. (1) d=4 case is more subtle and our analysis leaves two impor-
n tant questions open, namely: what is the precise rate of
It follows from Eq.(10) that the terms involving time deriva- plowup and what is the nature of the threshold for blowup?
tives of  in Eq. (11) become asymptotically negligible and e plan to approach these issues by interpreting the expres-
therefore in the Ieading order this equation has the Samgion (9) in terms of motion a|0ng the one-dimensional
form as the right-hand side of E¢4), which explains why  moduli space of static solutions with the scalg) playing
the blowup profile has the shape of the static solution.  the role of the collective coordinate. The most straightfor-
In view of the limited resolution of our numerics and the \ard way of computing the dynamics on the moduli space
lack of theory we are not in position to make conjecturesysing the geodesic approximation is too naive in the present
about the time dependencefwhich would go beyond Eq. case: it predicts that changes linearly with timg12] which
(10). Although a power law fith~(T—t)*** with the s in contradiction with our numerics. We hope that more
anomalous exponeni~0.1 is quite accurate, we would not refined methods of dealing with collective coordinates, like
take this fact too seriously because we cannot rule out logahe ones described ifL4] in the context of the nonlinear
rithmic corrections and, maoreover, the eXpon&nEXhibitS Schr"cdinger equation in two Spatia| dimensionS, can be ap-
weak dependence on initial data. plied to our problem as well. In our opinion, the derivation of
It is instructive to compare thd=4 andd=5 blowups  the correct modulation equation for the scalds the most
from the standpoint of energy concentration. To this end, foimportant next step towards understanding the dynamics of
solutions which blow up we define the energy at titheT  plowup for YM equations in four spatial dimensions; hope-
inside the past light cone of the singularity fully it would also shed light on the character of transition
T—t between blowup and dispersion.
£(t)=c(d) JO

d-2
Wt2+Wr2+—2 > (1-w?)?|r?=3dr,
r
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