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On blowup of Yang-Mills fields

P. Bizoń
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We study the development of singularities for the spherically symmetric Yang-Mills equations in
(d11)-dimensional Minkowski spacetime ford54 ~the critical dimension! andd55 ~the lowest supercritical
dimension!. Using combined numerical and analytical methods we show in both cases that generic solutions
starting with sufficiently large initial data blow up in finite time. The mechanism of singularity formation
depends on the dimension: ind55 the blowup is exactly self-similar while ind54 the blowup is only
approximately self-similar and can be viewed as the adiabatic shrinking of the marginally stable static solution.
The threshold for blowup and the connection with critical phenomena in the gravitational collapse~which
motivated this research! are also briefly discussed.
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I. INTRODUCTION

The Yang-Mills~YM ! equations are the basic equations
gauge theories describing the fundamental forces of natur
understanding their solutions is the issue of great importa
This is not an easy task since, in contrast with Maxwe
equations or the Schro¨dinger equation, the YM equations a
nonlinear, which opens up the possibility that solutio
which are initially smooth become singular in the futur
Actually such a spontaneous breakdown of the solutions
YM equations cannot occur in the physic
(311)-dimensional Minkowski spacetime as was shown
a classic paper by Eardley and Moncrief@1# who proved that
solutions starting from smooth initial data remain smooth
all future times. A natural question is: how the property
global regularity depends on the dimension of the underly
spacetime, in particular, can singularities develop ind11
dimensions ford.3? We hope that our paper is a step
wards answering this question. As we argue below, the p
lem of singularity formation for YM equations in higher d
mensions is not only interesting in its own right but
addition, it sheds some light onto our understanding of E
stein’s equations in thephysicaldimension.

Despite intensive research the problem of global regu
ity for YM equations in 411 dimensions is entirely ope
@2#. A lot of progress has been accomplished in proving lo
existence for ‘‘rough’’ initial data, yet the attempts of pro
ing global regularity for small energy initial data by esta
lishing local well-posedness in the energy norm fail
achieve the goal by ‘‘epsilon’’@3# ~nota benesuch a local
proof of global existence has been obtained in 311 dimen-
sions @4#, thereby improving the theorem of Eardley an
Moncrief!. In this paper we report on numerical simulatio
which in combination with analytic results strongly sugge
that generic solutions with sufficiently large energy do in fa
blow up in finite time. Hence, we believe that the smallne
condition in the optimal local well-posedness result is no
technical shortcoming but is indispensable. We show that
0556-2821/2001/64~12!/121701~4!/$20.00 64 1217
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singularity formation is due to concentration of energy a
has the form of adiabatic shrinking of the marginally stab
static solution.

Higher dimensions (d.4) appear to be somewhat unde
explored; the only result we are aware of is the proof
existence of self-similar solutions ind55,7,9 @5#. These so-
lutions provide examples of singularities developing fro
smooth initial data, however nothing was known about th
genericity and stability. Here we restrict ourselves to thed
55 case because of its connection with Einstein’s equatio
We first show that the example of self-similar blowup giv
in @5# is in fact generic. Then we look at the threshold f
singularity formation and observe a behavior similar to t
critical behavior in gravitational collapse@6# ~with blowup
being the analog of a black hole!, in particular we find a
self-similar solution with one instability as the critical solu
tion.

We remark in passing that there are close parallels
tween YM equations ind11 dimensions and wave maps
(d22)11 dimensions@5#. Indeed, many of the phenomen
described below have been previously observed by us for
equivariant wave maps into spheres in two@7# and three@8#
spatial dimensions.

II. SETUP

We consider Yang-Mills fields in (d11)-dimensional
Minkowski spacetime~in the following Latin and Greek in-
dices take the values 1,2, . . . ,d and 0,1,2, . . . ,d respec-
tively!. The gauge potentialAa is a one form with values in
the Lie algebrag of a compact Lie groupG. Here we take
G5SO(d) so the elements ofg5so(d) can be considered a
skew-symmetricd3d matrices and the Lie bracket is th
usual commutator. In terms of the curvatureFab5]aAb
2]bAa1e@Aa ,Ab# the Yang-Mills equations are

]aFab1e@Aa ,Fab#50, ~1!
©2001 The American Physical Society01-1
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wheree is the gauge coupling constant. It is customary to
e51 and we shall also do so in the following. However, it
worth remembering that@e2#5M 21Ld24 ~in c51 units!; in
particular,e2 has the same dimension ind55 as Newton’s
constantG in d53.

The YM equations~1! are scale invariant: ifAa(x) is a
solution, so isÃa(x)5l21Aa(x/l). The conserved energy

E~A!5E
Rd

Tr~F0i
2 1Fi j

2 !ddx ~2!

scales asE(Ã)5ld24E(A), thus in the partial differentia
equations~PDE! terminology the YM equations are subcrit
cal for d<3, critical for d54, and supercritical ford>5. It
is believed that subcritical equations are globally regular
cause energy conservation rules out concentration of s
tions on arbitrarily small scales. On the contrary, for sup
critical equations concentration might be energetica
favorable and consequently singularities are expected to
cur. The critical equations provide an interesting borderl
case.

We assume the spherically symmetric ansatz@9#

Aa
i j ~x!5~da

i xj2da
j xi !

12w~ t,r !

r 2
, ~3!

where r 5Axi
2. Then, the YM equations~1! reduce to the

scalar semilinear wave equation for the magnetic gauge
tential w(t,r ),

wtt5D (d22)w1
d22

r 2
w~12w2!50, ~4!

whereD (d22)5] r
21@(d23)/r #] r is the radial Laplacian in

d22 dimensions. We solve numerically the initial valu
problem for the above equation ind54 and 5. Our simula-
tions were performed using finite-difference methods co
bined with adaptive mesh refinement. The latter was es
tial in resolving the structure of singularities developing
very small scales. To ensure regularity at the center we
quire thatw(t,0)511O(r 2). At the outer boundary of the
computational grid we impose the outgoing wave conditi
Below we present results for the time-symmetric Gauss
initial data of the form

w~0,r !512Ar2 exp@2s~r 2R!2#, wt~0,r !50, ~5!

with adjustable amplitudeA and fixed parameterss510 and
R52. We have obtained the same qualitative results for s
eral other families of initial data so we believe that the ph
nomena described here are generic.

III. RESULTS

We begin our description in a unified dimensio
independent manner; all statements which do not explic
involve the dimension apply both tod54 andd55. Since
our data are time symmetric, the initial profile splits in
ingoing and outgoing waves. The evolution of the outgo
12170
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wave has nothing to do with singularity formation so w
shall ignore it in what follows. The behavior of the ingoin
wave depends on the amplitudeA. For small amplitudes the
ingoing wave approaches the center, reaches a minima
dius, bounces back and then disperses to infinity leaving
hind an empty space. For large amplitudes the ingoing w
keeps concentrating near the center and eventually blow
in finite time. As the blowup timeT is approached we ob
serve the development of a rapidly evolving inner regi
which is clearly separated from an almost frozen outer
gion. The inner solution attains a kinklike shape whi
shrinks in a self-similar manner

w~ t,r !'W~h!, h5
r

l~ t !
, ~6!

where the profileW depends on the dimension but otherwi
seems universal. The scalel(t) goes to zero ast→T which
signals blowup since the second derivative] r

2w(t,0)
5W9(0)l22(t) becomes unbounded~there is no blowup of
the first derivative becauseW8(0)50, as we shall see be
low!.

The subsequent discussion of the details of blowup ha
be given separately in each dimension. We begin with
easier supercritical case.

dÄ5

In this case the scale changes linearly, that isl(t)5T
2t, as one would expect from dimensional analysis. T
blowup profile is given by the exact self-similar solution
Eq. ~4!

W5W0~h!5
12h2

11 3
5 h2

, h5
r

T2t
. ~7!

The solutionW0 was proved to exist in@5# and recently
found in closed form by one of us@10#. This solution is

FIG. 1. Blowup ind55. The plot shows the late time evolutio
of large initial data (A50.2). As the blowup progresses, the inn
solution gradually attains the form of the stable self-similar solut
W0„r /(T2t)…. The outer solution appears frozen on this timesca
1-2



g
e
s

ibl
be
u

o

te
o
e
to
e

e

d
ta
lly

ie
th

at

e

te

ar-

ain
nal
law
r

ove
esh-

3

lity,
’s
em
.

r
be
e

n-

e
-

-
se
e
ro
pe

n
e

RAPID COMMUNICATIONS

ON BLOWUP OF YANG-MILLS FIELDS PHYSICAL REVIEW D64 121701~R!
linearly stable@10# ~apart from the instability correspondin
to shifting the blowup time! which supports the fact that w
see it as a generic attractor without tuning any parameter
initial data ~see Fig. 1!.

We think that the basic mechanism which is respons
for the observed asymptotic self-similarity of blowup can
viewed as the convergence to the lowest ‘‘energy’’ config
ration. To see this, note that rewriting Eq.~4! in terms of the
similarity variableh and the slow timet52 ln(T2t) one
can convert the problem of blowup into the problem
asymptotic behavior of solutions fort→`. The point is that
in these variables the wave equation contains a damping
which simply reflects the presence of an outward flux
energy through the past light cone of the singularity. Henc
is natural to expect that solutions will tend asymptotically
the least ‘‘energy’’ equilibrium state, which is nothing els
but W0.

It was shown in@10# that W0 is actually the ground stat
of a countable family of self-similar solutionsWn (n
50,1, . . . ) of Eq.~4!. All n.0 solutions are unstable an
therefore not observed in the evolution of generic initial da
However, they may show up in the evolution of specia
prepared initial data. The solutionW1 with one unstable
mode is particularly interesting since it appears as a trans
metastable state in the evolution of initial data tuned to
threshold for blowup. This indicates thatW1 is a critical
solution whose codimension-one stable manifold separ
blowup from dispersion~see Fig. 2!.

Let A* be the critical amplitude corresponding to th
threshold. For initial data with amplitudes nearA* , in the
intermediate asymptotics where the solution is approxima
by W1, the amplitude of the unstable mode aboutW1 is
proportional to (A* 2A)(T2t)2g whereg55 ~!! is the ei-

FIG. 2. The critical behavior ind55. The rescaled solution
w„t,(T2t)r … is plotted against ln(r) for a sequence of intermediat
times. Shown~solid and dashed lines! is the pair of solutions start
ing with marginally critical amplitudesA5A* 6e, where A*
50.144296087005405. Sincee510215, the two solutions are indis
tinguishable on the first seven frames. The convergence to the
similar solutionW1 ~dotted line! is clearly seen in the intermediat
asymptotics. The last two frames show the solutions departing f
the intermediate attractor towards blowup and dispersion, res
tively.
12170
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genvalue of the unstable mode@10#. This implies that the
time of departure from the intermediate attractor, call itt* ,
scales asT2t* ;uA* 2Au1/5. Various scaling laws can be
derived from this. For example, consider solutions with m
ginally subcritical amplitudesA5A* 2e. For such solutions
the energy density

r~ t,r !5
wt

2

r 2
1

wr
2

r 2
1

3~12w2!2

2r 4
~8!

initially grows at the center, attains a maximum at a cert
time tmax and then drops to zero. An elementary dimensio
analysis based on the above scaling predicts the power
r(tmax,0);e24/5. We have verified this prediction in ou
simulations~with 4% error!.

We point out that the threshold behavior described ab
shares many features with critical phenomena at the thr
old for black hole formation in the gravitational collapse@6#.
This fact, together with similar results for wave maps in
11 dimensions@8,11# ~and other systems@13#!, shows that
the basic properties of critical collapse, such as universa
scaling, and self-similarity, originally observed for Einstein
equations, actually have nothing to do with gravity and se
to be robust properties of supercritical evolutionary PDEs

dÄ4

In this case Eq.~4! does not admit regular self-simila
solutions, so the numerically observed self-similarity can
only approximate. We identify the blowup profile as th
scale-evolvingstatic solution ~see Fig. 3!

W5WS~h!5
12h2

11h2
, h5

r

l~ t !
. ~9!

We call this solution static because for anyfixedl it is the
time-independent solution of Eq.~4! ~this solution is perhaps
better known as the YM instanton in four Euclidean dime

lf-

m
c-

FIG. 3. Blowup ind54. The plot shows the late time evolutio
of large initial data (A50.5). The inner solution has the form of th
scale-evolving static solutionWS„r /l(t)… with the scalel(t) going
to zero slightly faster than linearly.
1-3
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sions!. Since the energy does not depend onl, these solu-
tions are only marginally stable; when kicked they shrink
expand. In other words the blowup can be viewed as
adiabatic shrinking of the static solution. Numerical eviden
suggests that the rate of blowup goes asymptotically to z
that is (̇ 5d/dt)

lim
t→T

l~ t !

T2t
52 lim

t→T
l̇50. ~10!

Although we are not able to explain this fact, we point o
that it seems necessary for the consistency of the quasi-s
character of blowup~9!. To see this, substitute the ansatz~6!
into Eq. ~4! to obtain

~12l̇2h2!W91@11~ll̈22l̇2!h2#
W8

h

1
2

h2
W~12W2!50. ~11!

It follows from Eq.~10! that the terms involving time deriva
tives of l in Eq. ~11! become asymptotically negligible an
therefore in the leading order this equation has the sa
form as the right-hand side of Eq.~4!, which explains why
the blowup profile has the shape of the static solution.

In view of the limited resolution of our numerics and th
lack of theory we are not in position to make conjectu
about the time dependence ofl which would go beyond Eq
~10!. Although a power law fitl;(T2t)11a with the
anomalous exponenta'0.1 is quite accurate, we would no
take this fact too seriously because we cannot rule out lo
rithmic corrections and, moreover, the exponenta exhibits
weak dependence on initial data.

It is instructive to compare thed54 andd55 blowups
from the standpoint of energy concentration. To this end,
solutions which blow up we define the energy at timet,T
inside the past light cone of the singularity

E~ t !5c~d!E
0

T2tS wt
21wr

21
d22

2r 2
~12w2!2D r d23dr,

~12!

where the coefficientc(d)5(d21)vol(Sd21) follows from
integrating Eq.~2! over the angles and taking the trace. F
d55, substituting Eq. ~7! into Eq. ~12! we obtain
-

n
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limt→T E(t)50, hence no energy gets concentrated into
singularity. In contrast, ford54, substituting Eq.~9! into Eq.
~12! and using Eq.~10! we obtain

lim
t→T

E~ t !56p2E
0

`S WS8
21

~12WS
2!2

r 2 D r dr 516p2,

thus the energy equal to the energy of the static solutionWS
concentrates at the singularity. Note that only the poten
energy becomes concentrated; the kinetic energy te
asymptotically to zero. In fact, in our simulations we can s
the excess energy being slowly radiated away from the in
region as the blowup profile converges to the static soluti

To summarize, our work provides numerical evidence t
solutions of YM equations in four and five spatial dime
sions do form singularities from generic smooth large init
data. While the self-similar character of blowup ind55 is
well understood~at least from the numerical perspective!, the
d54 case is more subtle and our analysis leaves two imp
tant questions open, namely: what is the precise rate
blowup and what is the nature of the threshold for blowu
We plan to approach these issues by interpreting the exp
sion ~9! in terms of motion along the one-dimension
moduli space of static solutions with the scalel(t) playing
the role of the collective coordinate. The most straightf
ward way of computing the dynamics on the moduli spa
using the geodesic approximation is too naive in the pres
case: it predicts thatl changes linearly with time@12# which
is in contradiction with our numerics. We hope that mo
refined methods of dealing with collective coordinates, li
the ones described in@14# in the context of the nonlinea
Schrödinger equation in two spatial dimensions, can be
plied to our problem as well. In our opinion, the derivation
the correct modulation equation for the scalel is the most
important next step towards understanding the dynamic
blowup for YM equations in four spatial dimensions; hop
fully it would also shed light on the character of transitio
between blowup and dispersion.
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