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We study the asymptotic behavior of spherically symmetric solutions in the Skyrme model. We show
that the relaxation to the degree-one soliton (called the Skyrmion) has a universal form of a superposition
of two effects: exponentially damped oscillations (the quasinormal ringing) and a power-law decay (the
tail). The quasinormal ringing, which dominates the dynamics for intermediate times, is a linear resonance
effect. In contrast, the polynomial tail, which becomes uncovered at late times, is shown to be a nonlinear
phenomenon.
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I. INTRODUCTION

Stable stationary solutions are natural candidates for the
endstates of evolution of many physical systems. The
relaxation to these states is well understood for dissipative
systems, described by diffusion equations, however for
conservative Hamiltonian systems on unbounded domains
the problem is much more difficult because there is no
local dissipation of energy and convergence to equilibrium
is due to dispersion, that is, radiation of excess energy to
infinity [1]. Understanding dissipation by dispersion is
important physically because the radiation emitted during
the approach to equilibrium encodes information about the
attractor—this kind of inverse problem has various appli-
cations, for instance in identifying black holes via gravi-
tation radiation emitted during the last stages of
gravitational collapse.

In this paper we address the problem of relaxation to
equilibrium in a very simple setting of the spherically
symmetric Skyrme model [2]. This model, apart from its
physical relevance in particle physics, is attractive theo-
retically because the equilibrium state is completely rigid:
it has no moduli and no internal degrees of freedom, which
makes the mathematical analysis feasible. Yet, despite the
simplicity of the model, the relaxation process exhibits a
surprising feature: after a transient oscillatory exponential
decay (so-called quasinormal ringing) which is a linear
resonance effect, there proceeds a power-law tail which
has a nonlinear origin. Pointing out the failure of the linear
perturbation theory in capturing the asymptotic dynamics
is the main message of this paper. Below, after introducing
the model, we first describe the quasinormal ringing using
the linear perturbation theory, then we present the numeri-
cal evidence for the asymptotic behavior of solutions, and
finally we explain the tail using the nonlinear perturbation
theory

II. BACKGROUND

Let M be a spacetime with a metric ��� and N be a
complete Riemannian manifold with a metric gAB.

Consider a map U: M ! N and denote by S�� �
gAB@�U

A@�U
B the pulled back metric. The (generalized)

Skyrme model is defined by the Lagrangian

 L � �1
2S
�
� � 1

4�
2�S��S�� � S

�
�S���; (1)

where � is the coupling constant having the dimension of
length. In this paper we consider the original Skyrme
model [3] where M is the 3� 1 dimensional Minkowski
spacetime with the metric � � �dt2 � dr2 � r2d!2 and
N is the 3-sphere with the round metric ds2 � dF2 �
sin2Fd�2, where d!2 and d�2 are the standard metrics
on the unit 2-sphere. We restrict our attention to corota-
tional maps for which F � F�t; r� and � � !. For such
maps the Euler-Lagrange equations corresponding to (1)
reduce to the single nonlinear wave equation (using the
abbreviation w � r2 � 2�2sin2F)
 

�w _F�� � �wF0�0 � sin�2F�

� �2 sin�2F�
�
sin2F

r2 � F02 � _F2

�
� 0; (2)

where primes and dots denote derivatives with respect to r
and t, respectively. We are interested in the long-time
behavior of solutions of this equation for smooth finite
energy initial data. Regularity at the origin is ensured by
the boundary condition F�t; 0� � 0. The total conserved
energy associated with solutions of Eq. (2) can be written
as the sum E � E� � ES, where

 E� �
1

2

Z 1
0
�r2� _F2 � F02� � 2sin2F�dr; (3)

 ES �
1

2
�2

Z 1
0

�
sin2F� _F2 � F02� �

sin2F

r2

�
dr: (4)

The quadratic part of the energy E�, corresponding to the
pure sigma model (� � 0), has the supercritical scaling
E��F�x=��� � �E��F�x��, hence for � � 0 it may be
energetically favorable for solutions to shrink and conse-
quently singularities are expected to develop for some
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initial data [4]. The quartic part of the energy ES, intro-
duced by Skyrme, has the subcritical scaling
ES�F�x=��� � ��1ES�F�x��; thus for nonzero � shrinking
of solutions to zero size is prevented by energy conserva-
tion. Hereafter, we assume that the coupling constant � is
nonzero and use the unit of length such that � � 1. Note
that for the total energy to be finite, solutions must satisfy
the boundary condition at spatial infinity F�t;1� � m�
(m � 0; 1; . . . ), where an integer m is the topological de-
gree of the map. Since the time evolution is continuous (as
long as no singularity forms), this condition breaks the
initial value problem into infinitely many disjoint topologi-
cal sectors labeled by the degree m. It is well known that
for each m there is a unique regular static solution of
Eq. (2) [5]. Our numerical studies indicate that these static
solutions play the role of global attractors in the evolution
of regular corotational initial data of a given degree; that is
every solution starting from smooth finite energy initial
data of degree m remains globally regular for all times and
asymptotically settles down to the static solution of degree
m. Below, for concreteness, we focus our attention on the
degree-one sector m � 1. In this case we shall refer to the
static solution as the Skyrmion and denote it by S�r�. The
Skyrmion is the most interesting corotational soliton be-
cause, in contrast to solutions with m> 1, it is stable with
respect to general (nonradial) perturbations. The profile
function S�r� (see Fig. 1) is not known explicitly. The
existence of the Skyrmion was proved rigorously both by
ordinary differential equation techniques [5] and by varia-
tional methods [6].

III. LINEAR STABILITY AND QUASINORMAL
MODES

In order to interpret the numerical results shown below
we first need to discuss the spectrum of linear perturbations
around the Skyrmion. To this end we seek solutions in the

form F�t; r� � S�r� � �F�t; r�. Plugging this into Eq. (2),
linearizing and using the auxiliary field v�t; r� defined by

 �F�t; r� �
v�t; r�������������������������

r2 � 2sin2S
p ; (5)

we get the linear wave equation for the perturbation

 �v� v00 �
�

2

r2 � V
�
v � 0; (6)

where the effective potential is

 V � �4a2 1� 3a2 � 3a4

�1� 2a2�2
; a �

sinS
r
: (7)

Near the origin S�r� 	 br (with b 
 2:0075) and near
spatial infinity S�r� 	 �� c=r2 (with c 
 2:1596), hence
the potential V�r� is finite at r � 0 and falls off as r�6 for
large r. Substituting v�t; r� � e�ikt �r� into Eq. (6) we
obtain the l � 1 radial Schrödinger equation

 �  00 �
�

2

r2 � V�r�
�
 � k2 : (8)

It is known that this equation has no bound states (and the
spectrum is purely continuous k2 � 0) which implies that
the Skyrmion is linearly stable [7].

Although linear stability is an important property of a
soliton, it provides little information about the asymptotic
behavior of solutions near the soliton. The key concept in
the studies of the asymptotic stability of the soliton is the
notion of the quasinormal mode. The quasinormal mode
(known also as the resonance) is a regular solution of
Eq. (8), which satisfies the outgoing wave condition for
r! 1:

  �r� 	 eikr; k � �� i�; �> 0: (9)

The quasinormal mode with the least damping factor � is
expected to dominate an intermediate stage of the relaxa-
tion to the soliton. In order to find this mode we use a
shooting method which goes as follows. First, we express
 in the amplitude-phase form as  � A exp�i	� and
rewrite Eq. (8) as the following system:
 

�A00 � A	02 �
�

2

r2 � V � �2 ��2

�
A � 0; (10a)

A	00 � 2A0	0 � 2��A � 0: (10b)

To ensure regularity at the center we require that

 A�r� 	 r2 and 	�r� 	
��

5
r2 for r! 0: (11)

We need to find � and � such that the condition (9) is
satisfied. A naive shooting method does not work because
an unwanted ingoing wave contamination of the condition
(9) decreases exponentially with r and cannot be tracked
numerically. To overcome this difficulty (which is intrinsic
to the problem and any numerical method has to cope with
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FIG. 1. A solution of degree one (solid lines) is shown to
converge to the Skyrmion (dashed lines).
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it) we first solve Eqs. (10a) and (10b) with the initial
condition (11) up to some relatively small intermediate
r0. Next, for r > r0 we define the logarithmic derivative
g �  0= � A0=A� i	0 and replace the Schrödinger
Eq. (8) by the Ricatti equation

 g0 � g2 �
2

r2 � V � k
2 � 0: (12)

We solve this equation backwards in r from some large R
to r0 starting with the initial value

 g�R� �
kĥ01�kR�

ĥ1�kR�
; (13)

where the Ricatti-Hankel function ĥ1�kr� � ��i�
1
kr�e

ikr

is the exact outgoing wave solution of the free (V � 0)
Ricatti equation (12). The value of R should be chosen to
be sufficiently large so that the influence of the potential
V�R� is negligible; however in practice R should not be too
large in order to avoid numerical instabilities. Matching the
logarithmic derivatives at the midpoint r0 we found the
quasinormal mode at k � 0:61� 0:26i.

IV. NUMERICS

We solved Eq. (2) numerically for different degree-one
initial data and found that all solutions remain globally
regular and asymptotically settle down to the Skyrmion
(see Fig. 1). Proving this asymptotic completeness prop-
erty is a challenging open problem which we do not pursue
here but take it as the starting point for further discussion.

Our aim is to understand the asymptotic dynamics of
convergence to the Skyrmion. Here we mean convergence
in the pointwise sense; that is we consider the behavior of a
solution F�t; r� for large t at a fixed distance r. The basic
mechanism of decay is, of course, dispersion—it is clearly
seen in Fig. 1 how the excess energy is being radiated away
to infinity as the solution approaches the Skyrmion. During
the relaxation process one can distinguish two universal
stages of evolution: the oscillatory exponential decay
which we shall refer to as the quasinormal ringing and
the polynomial decay which we shall refer to as the tail.
The quasinormal ringing is a well-known effect in the
linear scattering theory [8,9]. As the name indicates, it is
due to the presence of a quasinormal mode. The numerical
confirmation of this fact is given in Fig. 2 where we show
that for intermediate times the deviation of the solution
from the Skyrmion is perfectly approximated by the fun-
damental quasinormal mode.

For later times the quasinormal mode becomes negli-
gible and the decay takes the form of a polynomial tail. The
numerical computation of the tail (see Fig. 3) gives the
power-law decay F�t; r� � S�r� 	 t�5.

Surprisingly, the rate of decay of the tail is different than
that predicted by the linear scattering theory. To see this,
recall that according to this theory [10], for compactly

supported initial data a solution of the linear radial wave
equation with a regular potential V�r�,

 �v� v00 �
l�l� 1�

r2 v� Vv � 0; (14)

decays at a fixed r as v�t; r� 	 t�
, where 
 � 2l� � and
�> 3 is the rate of falloff of the potential at spatial infinity,
i.e. V�r� 	 r�� for r! 1 (for compactly supported or
exponentially localized potentials there are no tails). In
the case at hand (Eq. (6)) we have l � 1 and � � 6, hence
according to the linear theory the tail should have the
power index 
 � 8 instead of the observed 
 � 5. Thus,
the tail must be a nonlinear effect and to understand it one
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FIG. 2. We plot lnjP�t; r0 � 10�j, where P�t; r� � w _F�t; r�.
Fitting the exponentially damped oscillation P�t; r0� �
Ae��t sin��t� �� to the numerical data on the time interval
(20, 60) we get � � 0:610 and � � 0:260 in perfect agreement
with the perturbative calculation of the fundamental quasinormal
mode.
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FIG. 3. The same plot as in Fig. 2 but using the log-log scale.
Fitting the function a� b lnt� c=t (the power-law decay plus
the first correction) to the numerical data on the interval (200,
1000) we get b � 6:05.
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needs to go beyond the linear perturbation theory. We
found that the third order perturbation theory provides a
very good approximation of the tail. Unfortunately, the
perturbative expansion around the Skyrmion is very messy
and the technical details of the calculation might obscure
the key mechanism which is responsible for the nonlinear
tail. To avoid that, we will take advantage of the fact that
the same mechanism is operating in a simpler setting of the
relaxation to the vacuum in the topologically trivial sector
m � 0. In this case there is no tail at all at the linear level.

V. NONLINEAR TAIL

For topologically trivial initial data all solutions con-
verge asymptotically to the vacuum F0 � 0. To determine
the rate of convergence, we substitute the expansion F �
�F1 � �

2F2 � �
3F3 �O��4� into Eq. (2), where �F1 sat-

isfies initial data while all Fn with n > 1 have zero data. In
the first order we get the free l � 1 radial wave equation

 LF1 � 0; L :�
@2

@t2
�

1

r2

@
@r

�
r2 @
@r

�
�

2

r2 ; (15)

whose general regular solution has the form

 F1�t; r� �
a0�t� r� � a0�t� r�

r
�
a�t� r� � a�t� r�

r2 ;

(16)

where the function a�r� is determined by initial data. We
assume that the initial data have compact support, hence F1

has no tail in agreement with Huygens’s principle.
In the second order LF2 � 0, hence F2 vanishes, but in

the third order we get the inhomogeneous equation

 LF3 �
4

3r2 F
3
1 � h; (17)

 h �
2�2

r4 �F
3
1 � 2rF2

1F
0
1 � r

2F1�F021 � _F2
1��: (18)

We solve Eq. (17) using the retarded Green’s function of
the operator L

 G�t� t0; r; r0� � �jr� r0j � t� t0

� r� r0�
r2 � r02 � �t� t0�2

4r2 : (19)

It follows from (16) that for large r the term h is of lower
order in comparison with the first term on the right-hand
side of Eq. (17), thus we can drop it without affecting the
leading order asymptotics of the tail. Then, using double
null coordinates u � t0 � r0, v � t0 � r0, we obtain
 

F3�t; r� �
2

3r2

Z t�r

jt�rj
dv


Z t�r

�v

�v� t��t� u� � r2

�v� u�2
F3

1�u; v�du: (20)

We are interested in the asymptotic behavior of F3�t; r� for
a fixed r and t! 1 (timelike infinity). Since the initial
data have compact support, in this limit we can change the
order of integration in (20) and perform the integration
over v explicitly. In the leading order we get

 F3�t; r� 	 crt
�5; c � �

64

9

Z 1
�1

a0�u�3du; (21)

where the constant c is the only trace of initial data. We
have verified numerically that this formula provides a very
good approximation of the tail for solutions having suffi-
ciently small initial data (see Fig. 4).

VI. CONCLUSIONS

It should be clear from the above discussion that the
nonlinear tail is not an exceptional feature of the Skyrme
model, but it is a general phenomenon in scattering theory
for nonlinear wave equations which will be present when-
ever the backscattering due to an effective potential around
the attractor is weaker than the backscattering due to a
nonlinearity. This kind of phenomenon does not seem to
have been explored in the literature, and we hope that our
letter will initiate investigations of an interplay between
linear and nonlinear effects in relaxation processes.
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FIG. 4. We plot the degree zero solution (solid line) for initial
data F�0; r� � r3e�r

2
, _F�0; r� � 0 and superimpose (dashed

line) the analytic prediction for the tail (21) with c �
35

�������
3�
p

=1458 
 0:0737 (note that there is no adjustable parame-
ter). The relative error (representing the contribution from higher
order iterations) is 	5%.
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