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Periodic self-similar wave maps coupled to gravity
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We continue our studies of spherically symmetric self-similar solutions in theSU(2) sigma model coupled
to gravity. Using mixed numerical and analytical methods we show the existence of an unstable periodic
solution lying at the boundary between the basins of two generic attractors.
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I. INTRODUCTION

This is the third paper in a series aimed at understand
the structure of self-similar spherically symmetric wa
maps coupled to gravity. In the first two papers@1,2# we
showed that for small values of the coupling constant th
exists a countable family of solutions that are analytic bel
the Cauchy horizon of the central singularity. In this pap
we wish to elaborate on the analysis of a periodic self-sim
solution whose existence was only briefly mentioned in@1#.
We tried to make this paper self-contained mathematic
but we refer the reader to@1# for the discussion of the physi
cal background of the problem and to@3# for more on the
role of self-similar solutions in gravitational collapse.

II. SETUP

For the reader’s convenience we repeat from@1# the basic
setting for the problem. LetX:M→N be a map from a
spacetime (M ,gab) into a Riemannian manifold (N,GAB).
Wave maps coupled to gravity are defined as extrema of
action

S5E
M
S R

16pG
2

f p
2

2
gab]aXA]bXBGABDdvg . ~1!

Here G is Newton’s constant andf p
2 is the wave map cou

pling constant. The dimensionless parametera54pG fp
2

characterizes the strength of the coupling. The field eq
tions derived from Eq.~1! are the wave map equation

!gXA1GBC
A ~X!]aXB]bXCgab50, ~2!

whereGBC
A (X) are the Christoffel symbols of the target me

ric GAB and !g is the d’Alembertian associated with th
metric gab , and the Einstein equationsRab21/2gabR
58pGTab with the stress-energy tensor

Tab5 f p
2 S ]aXA]bXB2

1

2
gab~gcd]cX

A]dXB! DGAB . ~3!

As a target manifold we take the three-sphereS3 with the
standard metric in polar coordinatesXA5(F,Q,F)
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GABdXAdXB5dF21sin2 F~dQ21sin2 Q dF2!. ~4!

For the domain manifold we assume spherical symmetry
use Schwarzschild coordinates

gabdxadxb52e22dA dt21A21dr21r 2~du21sin2 u df2!,

~5!

whered andA are functions of~t, r!. Next, we assume tha
the wave maps are corotational, that is,

F5F~ t,r !, Q5u, F5f. ~6!

Equation ~2! then reduces to the single semilinear wa
equation

!gF2
sin~2F !

r 2 50, ~7!

where

!g52ed] t~edA21] t!1
ed

r 2 ] r~r 2e2dA] r !, ~8!

and the Einstein equations become

] tA522arA~] tF !~] rF !, ~9!

] rd52ar @~] rF !21A22e2d~] tF !2#, ~10!

] rA5
12A

r
2ar S A~] rF !21A21e2d~] tF !212

sin2 F

r 2 D .

~11!

These equations are invariant under dilations (t,r )
→(lt,lr ) so it is natural to look for continuously self
similar solutions, that is, solutions which are left invariant
the action of the homothetic Killing vectorK5t] t1r ] r .
Such solutions are functions of the similarity variabler
5r /(2t) only. For our purposes it is more convenient to u
another independent variablex, which is related tor by the
transformation

dx

dr
5

e2dA

r2 . ~12!
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Assuming thatA5A(x), F5F(x), and using an auxiliary
function W(x)5e2dA/r, we showed in@1# that Eqs.~7!–
~11! reduce to the following system of autonomous ordina
differential equations~where the prime indicatesd/dx):

W85211a~12W2!F82, ~13!

A8522aAWF82, ~14!

~AF8!85
sin~2F !

W221
, ~15!

subject to the constraint

12A22a sin2 F1aAF82~W221!50. ~16!

Since the system is autonomous, without loss of genera
we may assume that the past light cone of the singularit
located atx50. We are interested in solutions of Eqs.~13!–
~16! starting atx50 with the following initial conditions~as
explained in@1# these conditions ensure regularity of sol
tions at the past light cone of the singularity!:

F~0!5
p

2
, F8~0!5b, W~0!51, A~0!5122a,

~17!

whereb is a free parameter~since the system has reflectio
symmetryF→2F we may takeb.0 without loss of gen-
erality!. The valueA(0) follows from the constraint~16!. In
what follows we shall refer to solutions of Eqs.~13!–~16!
satisfying the initial conditions~17! asb-orbits. We showed
in @2# that, fora,1/2, b-orbits exist locally and are analyti
in b andx. Throughout the paper we assume thata,1/2.

It follows immediately from Eqs.~13!–~16! that ab-orbit
can be continued as long asuWu,1 ~since then 0,A,1).
However, ifW hits 61 at somex, then the solution become
singular. We showed in@1# that genericb-orbits become sin-
gular in finite time. More specifically, we showed th
b-orbits tend in finite time toW521 if b is small, or toW
511 if b is large. In what follows, we shall refer to thes
two kinds of solutions as typeA and typeB orbits, respec-
tively. Now, we show that the sets of typeA and typeB orbits
are open.

Lemma 1.If W(x).0 andA(x),1/22a for somex.0
then the orbit is of type B, i.e., there is a finitex0 such that
limx→x0

W(x)51. Moreover, limx→x0
A(x)50.

Proof. Substituting Eq.~16! into Eq. ~13!, we get

W85221
122a sin2 F

A
.221

122a

A
. ~18!

Thus, if A(x),1/22a then W8(x).0 so if W(x).0 then
W remains positive. But then by Eq.~14! A decreases, which
implies by Eq.~18! thatW8 remains positive~bounded away
from zero in fact!, and henceWmust hit11 in finite time. To
prove the second part of the lemma, note that by Eqs.~13!
and ~14! we have~using the abbreviationV512W2)
06401
y

ty
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AD 8
5

2W

A
. ~19!

Assume that A(x0).0. Then (V/A)(x0)50 and since
(V/A)(x).0 for x,x0 we get a contradiction. Henc
A(x0)50.

Corollary. Type B orbits are open.
Proof. If the b0-orbit is of type B thenA(x,b0)→0 and

W(x,b0)→1 as x→x0 ; hence forx close to x0 we have
A(x,b0),1/22a and W(x,b0).0. Thus for nearbyb we
also haveA(x,b),1/22a and W(x,b).0, which implies
by Lemma 1 that theb-orbit is of type B.

Proposition 1.Type A orbits are open.
Proof. First, note that if the orbit is of type A andW(x)

>0 thenA(x)>1/22a ~since otherwise the orbit would b
of type B by Lemma 1!. But for W,0 by Eq. ~14! A8.0;
henceA(x).A(x0)>1/22a for x>x0 wherex0 is the point
at whichW(x0)50. Thus,A.122a for type A orbits. Now,
let the b0-orbit be of type A and consider a nearbyb-orbit.
By continuity, there is a pointx1 such thatW(x1 ,b) is close
to 21, W(x1 ,b),0, andA(x1 ,b) is greater than, say, 1/2
2a. First we show that such orbits haveW8(x,b),0 for all
x.x1 . To see this, notice that from Eqs.~13!–~15!

W9522aF8A21@aAWF83~W221!2WAF81sin~2F !#;

hence at the first zero ofW8(x,b) after x1 we have

W9uW8505
1

AV
~4AW62AaV sin 2F !. ~20!

The numerator is negative becauseA.1/22a and W is
close to21, while the denominator is always positive; hen
W9,0, which is a contradiction. Thus,W8(x,b),0 and
limx→x1

W(x,b) exists~if the orbit stays in the region!. Now

we show thatW(x2 ,b)521 for any such orbit for some
x2.x1 . To prove this assume that limx→` W(x)5W̄>21.
Integrating Eq.~13! we get

E
x1

x

W8dx5x12x1aE
x1

x

VF82dx, ~21!

which gives a contradiction asx→` because the last integra
in Eq. ~21! is finite—to see this remember thatA is bounded
from below and hence ln(A) has a limit and therefore by Eq
~14! WF82 is integrable.

We now know that both type A and type B orbits are ope
so there must be orbits that are not type A or type B, that
orbits that stay inW2,1 for all x. Call these type C orbits
We note that type C orbits are defined for allx>0 since
A(x).1/22a for all x.

Proposition 2.For any type C orbit we have

lim inf W~x!<0 and lim supW~x!>0. ~22!

Proof. Suppose that there is anx1 such thatW(x)<2L
,0 for x.x1 @this is equivalent to lim supW(x),0]. Then
from Eq. ~19!
4-2
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S V

AD 8
5

2W

A
<

2L

A
<2L

for x.x1 and hence (V/A),0 for somex2.x1 , which is a
contradiction since (V/A)>0 for all x.

Similarly, suppose that there is anx1 such thatW(x)>L
.0 for x.x1 @this is equivalent to lim infW(x).0]. From
Lemma 1 we have thatA(x).1/22a for x.x1 . Thus

S V

AD 8
5

2W

A
>2L

for x.x1 which is a contradiction since by Lemma
(V/A)<2/(122a) for all x.

From Proposition 2 we see that type C orbits must os
late at infinity aboutW50 ~unless limW50 which we be-
lieve cannot happen!.

Once we know that typeC orbits exist we turn to their
numerical construction. Numerics indicates that the struc
of type C orbits is rather complicated for largea @4#. In this
paper we restrict our attention to small valuesa<0.42,
where the structure is simple; namely, for each givena there
is a single critical valueb* (a) such thatb-orbits tend to the
attractorA (B) if b,b* (b.b* ) and theb* -orbit is of type
C. In other words, theb* -orbit is a separatrix lying betwee
two generic attractorsA and B. In the next section we give
numerical and analytical arguments that theb* -orbit is as-
ymptotically periodic.

III. NUMERICAL SOLUTION

A straightforward way to determine the critical valueb*
is to take two valuesbA andbB leading to attractorsA andB,
respectively, and then fine-tune tob* by bisection. This pro-
cedure yields a pair ofb that are within a distancee from b*
~wheree is limited by machine precision!. Such marginally
critical b-orbits exhibit a transient periodic behavior befo
eventually escaping towardW561 ~see Figs. 1 and 2!.

This suggests that the system has an unstable per
solution and theb* -orbit belongs to its basin of attraction. I
other words, the valueb* corresponds to the intersection
the line of initial data (W51,F50,F85b) with the two-
dimensional stable manifold of the periodic solution. In fa
if we take any two pointsPA and PB in the phase spac
which lead to attractorsA and B, respectively, and perform
bisection, we obtain the same asymptotically periodic so
tion. This indicates that the stable manifold of the perio
solution is the boundary between the basins of attractorA
andB.

Since the periodic solution is unstable and numericall
is impossible to set initial conditions exactly on the sta
manifold, we cannot obtain too many cycles of the perio
solution. Although in our case this is not a serious difficu
because the positive Lyapunov exponents are not large~see
Fig. 7 below!, we would like to remark in passing that usin
the so called straddle-orbit method due to Battelinoet al. @5#
one can pursue the unstable periodic orbit in principle f
ever. This procedure, which can be viewed as a serie
bisections, goes as follows. At the initial time we choose t
06401
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points PA(x50) and PB(x50) which lead to different at-
tractors A and B and perform bisection until the distanc
between the iteratesPA(0) and PB(0) is less than a pre
scribedd. Next we integrate the equations numerically sta
ing from the currentPA(0) and PB(0) until the distance
between the trajectories exceedsd. When this happens a
some timex we stop the integration, assign the pointsPA(x)
and PB(x) as current representatives, and repeat the bis
tion. Iterating this procedure, one can progressively const
a trajectory staying within a distanced from the
codimension-1 stable manifold. The numerical solutions
tained by this method are shown in Figs. 3–5.

Using the fact that noncriticalb-orbits become singular in
finite time, we can easily compute the positive Lyapun
exponentl of the periodic solution. To this end, consider
marginally criticalb-orbit with b5b* 2e. Such an orbit ap-
proaches the periodic solution, stays close to it for so

FIG. 1. The functionW(x) for two marginally criticalb-orbits
for a50.38: the type A solution withb5b* 2e ~dotted line! and
the type B solution withb5b* 1e ~dash-dotted line!, where e
510217. Superimposed~solid line! is the periodic solution con-
structed by the straddle-orbit method. See Fig. 3 in@1# for a similar
plot for a50.2.

FIG. 2. The projection on the~A,W! plane of the same solution
as in Fig. 1. The periodic solution is seen as the unstable limit cy
4-3
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time, and eventually escapes along the unstable manifol
crash at a pointxA where W(xA)521. Therefore we can
write

xA5xapproach1xperiodic1xescape, ~23!

wherexapproach, xperiodic, andxescapedenote the lengths of th
respective intervals of evolution~we say that the solution
‘‘escapes’’ if its distance from the periodic attractor excee
a prescribed value!. During the periodic interval the distanc
between theb-orbit with b5b* 2e and the periodic solution
grows at a rate proportional toe exp(lx); hence xperiodic
;(21/l)ln e. This implies that the number of cyclesn dur-
ing this interval behaves asn;(21/lT)ln e, whereT is the
period of the periodic solution. The length of the esca
interval does not depend on the number of cycles but only
the phase of a cycle at which the escape from the perio
solution takes place; hencexescape; f (ln e), wheref is a peri-
odic function with periodlT. Summarizing, we have

xA'2
1

l
ln e1 f ~ ln e!1const. ~24!

The numerical verification of this formula is shown in Fig.

FIG. 3. The profiles of the periodic solution fora50.38.

FIG. 4. The phase portrait of the periodic solution fora
50.38.
06401
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Using Eq. ~24! we calculated the dependence ofl on the
coupling constanta—the result is shown in Fig. 7.

IV. PERTURBATION SERIES

In order to construct periodic solutions we consider E
~13!–~16! with initial conditions

F~0!50, F8~0!5c, W~0!50, A~0!5~11c2!21,

~25!

wherec is a free parameter and the valueA(0) follows from
the constraint~16!. We claim that for sufficiently smalla
there is a uniquec such thatF(T)5p, F8(T)5F8(0),
W(T)5W(0), A(T)5A(0) for someT.0. Since the sys-
tem is invariant under the shiftF→F1p, we call such a
solution periodic. Now we shall construct the periodic so
tion in a perturbative way using the Poincare´-Lindstedt
method@6#.

FIG. 5. The phase portraits of periodic solutions for differe
values of the coupling constanta ranging from 0.01 to 0.42. Asa
→0 the loop shrinks to zero andF8→`.

FIG. 6. Fora50.2, the locus of the point of crashxA is plotted
as a function of the logarithmic distance from the critical value lne.
The fit to the formula~24! gives l52.029. The period of the
wiggles, corresponding to the functionf (ln e), is equal to 2.887 in
agreement with the predicted valuelT @whereT51.418 was cal-
culated independently of Eq.~35!#.
4-4
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We define the new variabley5vx/Aa where v is the
unknown in advance frequency. We remark that the resca
of the independent variable byAa is essential in order to
have a well-defined limit fora→0, while the rescaling byv
is introduced for convenience in order to have the fixed
riod 2p. In terms of y, Eqs. ~13!–~15! transform to (b
5Aa)

vW85b@211v2~12W2!F82#, ~26!

A8522vbAWF82, ~27!

v2~AF8!85b2
sin~2F !

W221
, ~28!

and the constraint~16! becomes

12A22b2 sin2 F1v2AF82~W221!50. ~29!

We consider these equations on the interval 0<y<2p with
the boundary conditions

FIG. 7. The positive Lyapunov exponentl of the periodic solu-
tion as a function of the coupling constanta.
06401
g

-

F~0!50, F~2p!5p, W~0!50, A~0!5A0 ,
~30!

where the value of the constantA0 follows from the con-
straint~29!. We seek solutions in the form of a power seri
in b:

W~y,b!5 (
k50

`

bkWk~y!, A~y,b!5 (
k50

`

bkAk~y!,

F~y,b!5 (
k50

`

bkFk~y!. ~31!

The key idea of the Poincare´-Lindstedt method is to expan
the frequency in the power series

v~b!5 (
k50

`

bkvk ~32!

and to solve for the coefficientsvk by demanding that the
solution contains no secular terms. Thus, we substitute E
~31! and~32! into Eqs.~26!–~29!, group the terms according
to powers ofb, and require that the coefficients of eac
power of b vanish separately. In the lowest orderO(1) we
get

W0~y!50, A0~y!5S 11
v0

2

4 D 21

, F0~y!5
y

2
, ~33!

wherev0 is yet undetermined. In the next order we get t
equationv0W185(211v0

2/4), so to avoid a secular term w
need to havev052. Then allO(b) terms are zero and in th
orderO(b2) we get

W2~y!50, A2~y!52
1

2
, F2~y!5

1

2
sin~y!. ~34!

Iterating this procedure with the help ofMATHEMATICA we
calculated the perturbation series up to orderO(b23). For
example, up to orderO(b8) we have
v~b!522
b4

2
1

b6

2
2

49

32
b81O~b10!, ~35!

W~y,b!5sin~y!b31
sin~2y!

4
b51

25 sin~y!25 sin~2y!1sin~3y!

16
b71O~b9!, ~36!

A~y,b!5
1

2
2

b2

2
1

2214 cos~y!

8
b41

2428 cos~y!15 cos~2y!

16
b6

1
2601204 cos~y!2102 cos~2y!152 cos~3y!

384
b81O~b10!, ~37!

F~y,b!5
y

2
1

sin~y!

2
b2116 sin~2y!b41

81 sin~y!221 sin~2y!1sin~3y!

96
b6

1
1656 sin~y!1900 sin~2y!2616 sin~3y!19 sin~4y!

4608
b81O~b10!. ~38!
4-5
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We recall that the ‘‘physical’’ frequency is equal tov/b so it
diverges asb tends to zero~while the amplitude of oscilla-
tions goes to zero!. In this sense the periodic solution
nonperturbative even though we constructed it by a per
bation technique.

For small values ofb the perturbation expansion con
verges quickly to the periodic solution constructed nume
cally ~see Fig. 8!. As b grows the convergence becom
slower and we need to take many terms in the perturba
series to approximate the numerical solution well~see Fig.
9!. The fact that two independent ways of constructing
periodic solution agree makes us feel confident that the
riodic solution does in fact exist.

V. FINAL REMARKS

We showed above that for small values of the coupl
constanta the criticalb* (a)-orbit is asymptotically periodic

FIG. 8. Fora50.1 we plot the numerical periodic solution an
superimpose the perturbation series~35!. Even at this low order the
agreement is very good.
-

06401
r-

i-
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g

as x→`. In previous papers@1,2# we showed that for a
generic value ofa, the b* (a)-orbit evolved backward inx
becomes singular asx→2` ~which corresponds to a singu
larity at the center!. However, there exist isolated values ofa
~called an , n50,1,...) for which theb* (a)-orbit is regular
as x→2`. Combining this with the result obtained abov
we conclude that for a finite set of isolated valuesan ~satis-
fying an,0.42) the Einstein wave map equations admit se
similar solutions that are regular at the center and asymp
cally periodic outside the past light cone.
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FIG. 9. Fora50.38 we plot the numerical periodic solution an
superimpose the perturbation series in different orders. As the o
increases the perturbation series slowly approaches the nume
solution.
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