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Periodic self-similar wave maps coupled to gravity
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We continue our studies of spherically symmetric self-similar solutions ir5tHg2) sigma model coupled
to gravity. Using mixed numerical and analytical methods we show the existence of an unstable periodic
solution lying at the boundary between the basins of two generic attractors.

DOI: 10.1103/PhysRevD.69.064014 PACS nunifer04.20.Dw, 04.20.Ex

. INTRODUCTION GagdXAdXB=dF2+sir’ F(dO2+si? @ d®?).  (4)

This is the third paper in a series aimed at understandingor the domain manifold we assume spherical symmetry and
the structure of self-similar spherically symmetric waveuse Schwarzschild coordinates
maps coupled to gravity. In the first two papéis2] we b sn 3 Ao o )
showed that for small values of the coupling constant theredap®dx’= —e~?°A dt®+ A~ 1dr?+r?(d6*+sir® 6 d¢?),
exists a countable family of solutions that are analytic below 5)
the Cauchy horizon of the central singularity. In this paper .
we wish to elaborate on the analysis of a periodic self—simiIatﬁ’lge\:veaf/E‘;"nn(]j :‘ :r:r(feugg:ggzo%f(;’l rt)r};\tl?;(t’ we assume that
solution whose existence was only briefly mentionedlih P ’ ’
We tried to make this paper self-contained mathematically F=F(t.r 0=9 &= 6
but we refer the reader {d] for the discussion of the physi- (t.6), ’ ¢ ©

cal background of the problem and {t8] for more on the  Equation (2) then reduces to the single semilinear wave

role of self-similar solutions in gravitational collapse. equation
sin(2F
I, S-ETUP | OgF niz ) o, @
For the reader’s convenience we repeat fidithe basic

setting for the problem. LeX:M—N be a map from a \yhere
spacetime ,g,,) into a Riemannian manifoldN,G 4g) -
Wave maps coupled to gravity are defined as extrema of the e’
action Og=—e’d(e’A™ 10 + 2 d(r’e”°Ady), 8

2

R fw . . .
S:j ( T g9 XAg, XBG ag du,. ) and the Einstein equations become

M\ 167G 2
A= —2arA(dF)(4,F), 9)
Here G is Newton’s constant ané? is the wave map cou- 2, A2 25 2
. . . ™ — +
pling constant. The dimensionless parame&e4t47-rfo, 9o ar[(9rF)"+A""e™(aF)7], (10
characterizes the strength of the coupling. The field equa- 1—A SIPE
tions derived from Eq(1) are the wave map equation 9,A="———ar| A(6,F)?+A e?(9,F)>+2—]|.
r r
O XA+ TEc(X) d.XBapXCg2P=0, 2 (11

A . These equations are invariant under dilations,r)(
wherel'g(X) are the Christoffel symbols of the target met- _, (\xt \r) so it is natural to look for continuously self-
ric Gag and O is the d’Alembertian associated with the similar solutions, that is, solutions which are left invariant by
metric g, and the Einstein equation&®.p—1/2gapR  the action of the homothetic Killing vectok =td,+rd, .
=87GTyp with the stress-energy tensor Such solutions are functions of the similarity variahje

. =r/(—t) only. For our purposes it is more convenient to use

2 A. B — cd- wA - wB another independent variabe which is related to by the

Tab fﬂ' aax ﬁbx zgab(g (90)( é’dx ) GAB- (3) transformation
. . -5
As a target manifold we take the three-sph&fewith the %: e A (12)
standard metric in polar coordinat¥é=(F,0,®) dp  p?
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Assuming thatA=A(x), F=F(x), and using an auxiliary
function W(x)=e " °A/p, we showed in1] that Egs.(7)—

(12) reduce to the following system of autonomous ordinary

differential equationgwhere the prime indicated/dx):

W =—1+a(1-W?F'?, (13
A'=—2aAWF'?, (14)
sin(2F)
(AF")'= W1’ (15
subject to the constraint
1-A—2asif F+aAF'?(W?—1)=0. (16)
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i
A
Assume thatA(xy)>0. Then {/A)(xg)=0 and since

(VIA)(x)>0 for x<x, we get a contradiction. Hence
A(Xo) - O

Corollary. Type B orbits are open.

Proof. If the by-orbit is of type B thenA(x,by)—0 and
W(x,bg)—1 asx—Xq; hence forx close tox, we have
A(X,bg)<1/2— @ and W(x,by)>0. Thus for nearbyb we
also haveA(x,b)<1/2— « and W(x,b)>0, which implies
by Lemma 1 that thd-orbit is of type B.

Proposition 1.Type A orbits are open.

Proof. First, note that if the orbit is of type A and/(x)
=0 thenA(x)=1/2— « (since otherwise the orbit would be
of type B by Lemma L But for W<0 by Eg.(14) A'>0;

"2W

A (19

Since the system is autonomous, without loss of generalithenceA(x)>A(Xq)=1/2— a for x=x, wherex, is the point
we may assume that the past light cone of the singularity istt whichW(xq)=0. Thus,A>1— 2« for type A orbits. Now,

located atx=0. We are interested in solutions of E4$3)—
(16) starting atx=0 with the following initial conditiongas

explained in[1] these conditions ensure regularity of solu-

tions at the past light cone of the singulajity

F(0)

g, F'(0)=b, W(0)=1, A(0)=1-2a,
(17)

whereb is a free parametegsince the system has reflection
symmetryF— —F we may takeb>0 without loss of gen-
erality). The valueA(0) follows from the constraintl6). In
what follows we shall refer to solutions of Eq&l3)—(16)
satisfying the initial condition$17) as b-orbits. We showed
in [2] that, for «<<1/2, b-orbits exist locally and are analytic
in b andx. Throughout the paper we assume that 1/2.

It follows immediately from Eqs(13)—(16) that ab-orbit
can be continued as long ##/|<1 (since then 6<A<1).
However, ifW hits 1 at somex, then the solution becomes
singular. We showed ifil] that generid>-orbits become sin-
gular in finite time. More specifically, we showed that
b-orbits tend in finite time toNV=—1 if b is small, or tow
=+1 if b is large. In what follows, we shall refer to these
two kinds of solutions as typA and typeB orbits, respec-
tively. Now, we show that the sets of typeand typeB orbits
are open.

Lemma 1If W(x)>0 andA(x)<1/2— « for somex>0
then the orbit is of type B, i.e., there is a finitg such that
Iimx_,XOW(x)zl. Moreover, Iirr;_,XOA(x)ZO.

Proof. Substituting Eq(16) into Eq. (13), we get

2ar
A

1-2asiPF
A

W'=— >—-2+

(18)

Thus, if A(X)<1/2—« thenW’(x)>0 so if W(x)>0 then
W remains positive. But then by E¢lL4) A decreases, which
implies by Eq.(18) thatW’ remains positivébounded away
from zero in fact, and henc&V must hit+1 in finite time. To
prove the second part of the lemma, note that by ES).
and (14) we have(using the abbreviatiol'=1—W?)

let the by-orbit be of type A and consider a nearbyorbit.
By continuity, there is a point; such thatW(xq,b) is close
to —1, W(x4,b)<0, andA(xy,b) is greater than, say, 1/2
— a. First we show that such orbits haW¢' (x,b) <0 for all
X>X,. To see this, notice that from Eqa.3)—(15)

W'=—2aF' A aAWF 3(W?— 1)~ WAF' +sin(2F)];

hence at the first zero &' (x,b) afterx; we have

1
W' 0= 7y, (4AW:E 2\/aV sin 2F). (20)

The numerator is negative because>1/2—« and W is
close to—1, while the denominator is always positive; hence
W”<0, which is a contradiction. Thusy¥'(x,b)<0 and
lim,_.x W(x,b) exists(if the orbit stays in the regionNow
we show thatW(x,,b)=—1 for any such orbit for some
Xo>X;. To prove this assume that lyjm., W(x)=W=—1.
Integrating Eq(13) we get

X X
f W'dx=x1—x+af VF'2dx, (21)
X1 X1

which gives a contradiction as—~ because the last integral
in Eq. (2) is finite—to see this remember thatis bounded
from below and hence IA) has a limit and therefore by Eq.
(14) WF'? is integrable.

We now know that both type A and type B orbits are open,
so there must be orbits that are not type A or type B, that is,
orbits that stay inW?<1 for all x. Call these type C orbits.
We note that type C orbits are defined for a0 since
A(X)>1/2— « for all x.

Proposition 2.For any type C orbit we have

liminf W(x)<0 and limsupN(x)=0. (22

Proof. Suppose that there is an such thatW(x)<—L
<0 for x>x; [this is equivalent to lim si¥(x)<0]. Then
from Eq. (19
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Vi'_2w_-L 1 T ! F—
(A)_A\A\L 08 ¢ lxl —
for x>x,; and hence{/A)<0 for somex,>x4, which is a 04l !
contradiction since\(/A)=0 for all x. ' |
Similarly, suppose that there is ap such thatw(x)=L 02 '
>0 for x>x, [this is equivalent to liminfV(x)>0]. From =z o}
Lemma 1 we have thak(x)>1/2— « for x>Xx;. Thus 02 ]
V
v\’ 2w -04 +
(K) :TZZL 06 F
08 |
for x>x; which is a contradiction since by Lemma 1 4 , , , , P ,
(VIA)<2/(1—2«) for all x. 5 0 5 10 15 20 25 30
From Proposition 2 we see that type C orbits must oscil- x

late at infinity aboutW=0 (unless limW=0 which we be-
lieve cannot happeén
Once we know that typ€ orbits exist we turn to their

numerical construction. Numerics indicates that the structure. 10-

of type C orbits is rather complicated for large[4]. In this
paper we restrict our attention to small valuaes<0.42,
where the structure is simple; namely, for each giuethere
is a single critical valud* («) such that-orbits tend to the
attractorA (B) if b<b* (b>b*) and theb* -orbit is of type
C. In other words, thd* -orbit is a separatrix lying between
two generic attractoréd andB. In the next section we give
numerical and analytical arguments that tife-orbit is as-
ymptotically periodic.

. NUMERICAL SOLUTION

A straightforward way to determine the critical valb&
is to take two valueb, andbg leading to attractoré andB,
respectively, and then fine-tuneltd by bisection. This pro-
cedure yields a pair d that are within a distancefrom b*
(wheree is limited by machine precisignSuch marginally

FIG. 1. The functionW(x) for two marginally criticalb-orbits
for =0.38: the type A solution witlb=b* — ¢ (dotted ling and
the type B solution withb=b* + e (dash-dotted ling where €
7. Superimposedsolid line) is the periodic solution con-
structed by the straddle-orbit method. See Fig. Rlirfor a similar
plot for «=0.2.

points P5(x=0) and Pg(x=0) which lead to different at-
tractors A and B and perform bisection until the distance
between the iterateB,(0) and Pg(0) is less than a pre-
scribedd. Next we integrate the equations numerically start-
ing from the currentP,(0) and Pg(0) until the distance
between the trajectories exceedsWhen this happens at
some timex we stop the integration, assign the poiRtg(x)
and Pg(x) as current representatives, and repeat the bisec-
tion. Iterating this procedure, one can progressively construct
a trajectory staying within a distanced from the
codimension-1 stable manifold. The numerical solutions ob-
tained by this method are shown in Figs. 3-5.

Using the fact that noncriticdd-orbits become singular in

critical b-orbits exhibit a transient periodic behavior before finite time, we can easily compute the positive Lyapunov

eventually escaping towaM/= *+1 (see Figs. 1 and)2

exponent\ of the periodic solution. To this end, consider a

This suggests that the system has an unstable periodigarginally criticalb-orbit with b=b* —e. Such an orbit ap-
solution and thé* -orbit belongs to its basin of attraction. In Proaches the periodic solution, stays close to it for some
other words, the valub* corresponds to the intersection of

the line of initial data W=1F=0F'=b) with the two- 04 L S S e w s
dimensional stable manifold of the periodic solution. In fact, B -
if we take any two pointd, and Pg in the phase space 0.35 | C—
which lead to attractoré and B, respectively, and perform
bisection, we obtain the same asymptotically periodic solu- ;4|
tion. This indicates that the stable manifold of the periodic
solution is the boundary between the basins of attractors
< 025

andB. %

Since the periodic solution is unstable and numerically it
is impossible to set initial conditions exactly on the stable 021
manifold, we cannot obtain too many cycles of the periodic s
solution. Although in our case this is not a serious difficulty ~ 015}
because the positive Lyapunov exponents are not le@ge I
Fig. 7 below, we would like to remark in passing that using 0.1 . : . . : . L .
the so called straddle-orbit method due to Battekhal.[5] 108 06 04 02 \2, 02 04 06 08 f

one can pursue the unstable periodic orbit in principle for-
ever. This procedure, which can be viewed as a series of FIG. 2. The projection on théA,W) plane of the same solution
bisections, goes as follows. At the initial time we choose twoas in Fig. 1. The periodic solution is seen as the unstable limit cycle.
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FIG. 5. The phase portraits of periodic solutions for different
FIG. 3. The profiles of the periodic solution far=0.38. values of the coupling constantranging from 0.01 to 0.42. A&
—0 the loop shrinks to zero arfe’ —x.

time, and eventually escapes along the unstable manifold to .
crash at a poink, where W(x,)=—1. Therefore we can Usmg Eq.(24) we calculated t_he depen.den.ce Jofon the
write coupling constant—the result is shown in Fig. 7.

_ IV. PERTURBATION SERIES
Xa= Xapproacﬁ_ Xperiodic+ Xescape (23)

In order to construct periodic solutions we consider Egs.
WhereXapproach Xperiodic: @NdXescapedenote the lengths of the (13)—(16) with initial conditions
respective intervals of evolutiofwe say that the solution
“escapes” if its distance from the periodic attractor exceeds F(0)=0, F’(0)=c, W(0)=0, A(0)=(1+c?) 1
a prescribed valyeDuring the periodic interval the distance (25)
between thév-orbit with b=b* — € and the periodic solution
grows at a rate proportional te exp\x); hence Xperiodic

~(—=1/M\)In e. This implies that the number of cyclesdur- there is a uniquec such thatF(T)=, F'(T)=F'(0),

ing this interval behaves as~(—1/\T)In €, whereT is the B B :

period of the periodic solution. The length of the escapeW(T)._.VV(o).’ At(T)aA(g]) fo:};om::a'jlfo. Smce”the shys-
interval does not depend on the number of cycles but only oﬁem IS nvariant under the shik— ==, we call such a
the phase of a cycle at which the escape from the periodi8olut|_on periodic. N(_)W we shall construct th_e,pe_nodlc solu-
solution takes place; henegcaps- f(In €), wheref is a peri- tion in a perturbative way using the Poincdredstedt

wherec is a free parameter and the vald€0) follows from
the constraint(16). We claim that for sufficiently smalk

odic function with periodh T. Summarizing, we have method[6].

20 . . . .
1
wa—XIn e+f(Ine)+const. (24 8L
. L . . o 16

The numerical verification of this formula is shown in Fig. 6.

wl
F < ",

12+

22
10 +

1.8

14 8|

1

6 s s s s

06 35 -30 25 -20 15 -10

2 a0 In(b*-b)

FIG. 6. Fora=0.2, the locus of the point of crasfy is plotted
as a function of the logarithmic distance from the critical value. In
0702 The fit to the formula(24) gives A=2.029. The period of the

wiggles, corresponding to the functidiiin €), is equal to 2.887 in

FIG. 4. The phase portrait of the periodic solution far  agreement with the predicted valud [whereT=1.418 was cal-
=0.38. culated independently of E¢35)].

\il 0.2

064014-4



PERIODIC SELF-SIMILAR WAVE MAPS COUPLED TO...
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FIG. 7. The positive Lyapunov exponextbf the periodic solu-
tion as a function of the coupling constadmt

We define the new variablg= wx/\/a where  is the

PHYSICAL REVIEW B9, 064014 (2004

F(0)=0, F(2m)=m, W(0)=0, A(0)=A,,

(30

where the value of the constaAy follows from the con-
straint(29). We seek solutions in the form of a power series

in B:

W<y,ﬁ>=k§0 BW,(y), A(y,ﬁ>=k§o BALY),

F(y,ﬂ>=k§0 BFi(y). (31)

The key idea of the Poincatdndstedt method is to expand
the frequency in the power series

w(B)= go Brw (32)

and to solve for the coefficients, by demanding that the

unknown in advance frequency. We remark that the rescalingg|ytion contains no secular terms. Thus, we substitute Egs.
of the independent variable by« is essential in order to (31) and(32) into Egs.(26)—(29), group the terms according

have a well-defined limit fowe— 0, while the rescaling bw

to powers of 8, and require that the coefficients of each

is introduced for convenience in order to have the fixed pepower of g vanish separately. In the lowest orde¢1) we

riod 27. In terms ofy, Egs. (13)—(15) transform to B

= a)

oW =8[—1+ 0?(1-W?)F'?], (26)
A'=—-2wBAWF'?, (27
w?(AF")' =B SiTZF), (29
W2—1
and the constraintl6) becomes
1—A—2pB%si F+ w?AF'?(W?—1)=0. (29

We consider these equations on the intervalyd<27 with
the boundary conditions

get
wg) ! y
Wo(y)=0, Aoy)=|1+=°|  Foy)=3, (33

where wg is yet undetermined. In the next order we get the
equationwoW; = (—1+ w§/4), so to avoid a secular term we
need to havevy=2. Then allO(B) terms are zero and in the
orderO(B?) we get

1 1
W,(y)=0, Az(y)=—§, Fz(y)=§sin(y). (34)

Iterating this procedure with the help ®fATHEMATICA we
calculated the perturbation series up to or@3%%. For
example, up to orde®(B%) we have

4 6 49 . L
w(,B):Z—?ﬂL S 3P TOB 9, (39
sin(2 25si —5sin2y) +sin(3
Wiy, B)=sinty) g7+ S go 2SO SHANTSNE) g7 6 gs) (30
2 —2+4cosy) —4—8cogy)+5cog2y)
Ay B)= 5 g+ el i L e
. 60+ 204 cosy) — 13?:4c0$2y) +52 cog3y) 55+ 0(8Y), 37
Si . 81siny)—21sin2y)+sin(3
Fly.)= 5+ S g d6siniay) pt o o LSV TSINY) e
N 1656 sirty) + 900 sin(2y) — 616 si3y) + 9 sin4y) 88+ 0(B1), 39

4608

064014-5



BIZON, SZYBKA, AND WASSERMAN PHYSICAL REVIEW D69, 064014 (2004
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FIG. 8. Fora=0.1 we plot the numerical periodic solution and FIG. 9. Fora=0.38 we plot the numerical periodic solution and
superimpose the perturbation ser{@5). Even at this low order the superimpose the perturbation series in different orders. As the order
agreement is very good. increases the perturbation series slowly approaches the numerical

solution.
We recall that the “physical” frequency is equal & so it
diverges asB tends to zerqwhile the amplitude of oscilla-
tions goes to zeno In this sense the periodic solution is

nor_lperturbat_lve even though we constructed it by a Perture . .omes singular as— — (which corresponds to a singu-
bation technique. . L
. . larity at the center However, there exist isolated valuesmof
For small values ofB the perturbation expansion con- (called n=0,1,...) for which theb* (a)-orbit is regular
verges quickly to the periodic solution constructed numeri- “n> T S @ S Teg
SsX— —., Combining this with the result obtained above,

cally (see Fig. 8 As B grows the convergence becomes & - i .
slower and we need to take many terms in the perturbatio}® conclude that for a finite set of isolated valugs(satis-

series to approximate the numerical solution weke Fig.  ¥ing a,<0.42) the Einstein wave map equations admit self-
9). The fact that two independent ways of constructing thesimilar solutions that are regular at the center and asymptoti-
periodic solution agree makes us feel confident that the pecally periodic outside the past light cone.

riodic solution does in fact exist.

as x—o, In previous papers$l,2] we showed that for a
generic value ofa, the b* («)-orbit evolved backward irx
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