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Note about late-time wave tails on a dynamical background
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Consider a spherically symmetric spacetime generated by a self-gravitating massless scalar field ¢ and
let ¢ be a test (nonspherical) massless scalar field propagating on this dynamical background. Gundlach,
Price, and Pullin [Phys. Rev. D 49, 890 (1994).] computed numerically the late-time tails for different
multipoles of the field s and suggested that solutions with compactly supported initial data decay in
accord with Price’s law as t~ ‘™3 at timelike infinity. We show that in the case of the time-dependent

background dispersing to Minkowski spacetime Price’s law holds only for € = 0 while for each £ = 1 the

tail decays as 1~ @(*2),

DOI: 10.1103/PhysRevD.81.084047

The Einstein-massless scalar field system

Ra,B = 87Tva¢vﬁ¢r gaﬁvavﬁ¢ =0, (1)
restricted to spherical symmetry, has been serving as an
important theoretical laboratory for the investigation of
nonlinear gravitational phenomena in a rather simple 1 +
1 dimensional setting. For this system Christodoulou
proved that a generic spherically symmetric solution settles
down asymptotically either to Minkowski spacetime (for
small data) [1] or to a Schwarzschild black hole (for large
data) [2]. The first reliable numerical simulations of the
late-time asymptotics of this relaxation process have been
done by Gundlach, Price, and Pullin (GPP) [3]. They found
that, regardless of the end state of evolution, the scalar field
develops a tail that falls off as =3 near timelike infinity (for
compactly supported initial data).

In a recent paper [4] we revisited this problem to em-
phasize that the asymptotic convergence to a static equi-
librium (Minkowski or Schwarzschild) is an essentially
nonlinear phenomenon that cannot, despite many asser-
tions to the contrary in the literature, be properly described
by the theory of linearized perturbations on a fixed static
asymptotically flat background (Price’s tails [5,6]). This is
particularly evident for dispersive solutions that asymptote
Minkowski spacetime. In that case the quantitative char-
acteristics of the tail (the decay rate and the amplitude) can
be obtained using nonlinear perturbation expansion [4].
Since some details of this formal calculation will be
needed below, let us now briefly summarize it. In the
parametrization

-1
ds? = (1 - —2m(t, r)) (—e2Pen g + dr?)
r

+ r2(d9? + sin>ddg?), )

the system (1) takes a particularly convenient form (below
an overdot denotes 9/d¢ and a prime denotes 9/dr)

m' = 2ar(r — 2m)(¢p? + e 2B $?), (3)
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m = 4ar(r — 2m)¢3¢', 4)
;o 2m
B = = 2m)’ &)
. 1
() = (e, ©

Consider small and compactly supported initial data
(¢, d),—o = (ef(r), eg(r)). Then, up to the order O(e?),
we have

¢ =ed + ¢ m = g’my, B=¢eB (7
where ¢ satisfies the flat-space radial wave equation
" 2
Oy i= ¢ — ¢ _;¢l1 =0,
(d)l’ (j)l)t=0 = (f(l"), g(}’)),

while the second-order perturbations of the metric func-
tions satisty

)

. 2m
mh=2mR(Gi+ O0), By=TSO)

Solving Eq. (8) and then (9) we get for t > R (where R is
the radius of support of initial data)

(1, ”)zm, (10)
my(t, r) = 27T(2 /:i a’(s)ds — @) (11
Ba(t, 1) = 477(—% [oo a(s)ds + 2 [oo alz_(s: ds
o g2
A (za—(ss))B ds)’ (12)

where the initial-data-generating function a(u) vanishes
for |u| > R. The third-order perturbation of the scalar field
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&5 satisfies the inhomogeneous wave equation (with zero
initial data)

Oy = 2By + Bochy + Boo) = S(t, 7). (13)

The source S(1, r) is already known from (10)—(12) so we
can use the Duhamel formula

1 t t+r—r1
¢3(t,r)=—[drf
2r Jo |t—r—1

to obtain the asymptotic behavior for large retarded times

| pS(t,p)dp  (14)

ir
ot r) =51, r) ~ T 28 0;)2’ (15)

Ly = —2577'/ u)f (a'(s))*dsdu.

We refer the reader to [4] for more details about this
calculation and numerical evidence.

After this introduction, we are ready to discuss an inter-
esting model for investigating linear nonspherical tails on a
fixed dynamical background. This model, proposed by
GPP [3], involves a nonspherical test massless scalar field
i, which propagates on the spacetime (2) generated by the
self-gravitating field ¢. Since the dynamics of ¢ is linear
and the background is spherically symmetric, one may
decompose ¢ into spherical harmonics

P nd 9= Y butnY(d e,  (16)

(=0,|m|=¢
and analyze the evolution of each multipole separately,

e+ 1)

1
—(PPeByY! )V + B
rz(re in) T r(r — 2m)

(eiﬁlh,m)' - w{fm = 0.

a7

GPP conjectured’ that for compactly supported initial data
the multipoles have the tail i, (f, r) ~ ~¢*3) at timelike
infinity (¢ — oo at a fixed r), in accord with Price’s law on a
fixed Schwarzschild background, even though the actual
spherical background is time dependent and its Bondi mass
decreases (to a positive value in the collapsing case or to
zero in the dispersive case). It seems that GPP’s conjecture
was based more on belief than numerical evidence, be-
cause for the first few multipoles the following power-law
exponents of the tail were reported numerically (see
Fig. 12in [3]): —2.77(£ = 0), =3.95(( = 1), =594 (€ =
2), and —8.34 (€ = 3).

The purpose of this note is to point out that in this model
(and for other time-dependent backgrounds) Price’s law
(i.e., =3¢ decay) holds only for £ = 0, while for £ = 1
the power-law exponent of the tail is equal to —(2€ + 2)
(as was clearly indicated by GPP’s own numerics). To

"GPP considered the characteristic initial value problem while
we were studying the Cauchy problem; however, this difference
does not affect the asymptotics of tails.
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show that, we shall compute the late-time asymptotic
behavior of i ,,(¢, r) (for smooth initial data compactly
supported in a ball of radius R’) along similar lines as
described above for the field ¢. Since our method is
perturbative in nature, the quantitative results presented
here are restricted to weakly curved dynamical back-
grounds close to Minkowski spacetime.

The perturbation expansion for the test field has the form
Wom = Yo + &2y + , where for convenience of no-
tation we dropped the multipole indices on iterates. At the
zero order we have

.. 2 4¢3 + 1
Uyho = o — 6’—;% ( )lﬂo
(lp()’ '7.00)t=0 = (l/jfmr lr./ffm)t=0’ (18)

which for ¢ > R’ is solved by

Z 2€—k)! bW —r)

Vot ) =2 2 @1 @neF

19)

where the initial-data-generating function b(u) vanishes
for |u| > R’ (the superscript in round brackets denotes
the kth derivative). At the second order we get

.. .o 20(€ + 1
Oeytha =2Brtho + Batho + Bag _(T)mzlﬂo
=:8,(t, 1),
(2, ¥2)i=0 = (0,0). (20)

Substituting (11), (12), and (19) into the Duhamel formula
[where P,(x) is the Legendre polynomial of degree €]

Ualt, 1) = o f dr fl ;* or (rz + pz:p(t - 7)2)

X S¢(1, p)dp, 2D

we get (for large retarded times) for € = 0

& Bot
2= (22)

b(u) f (a'(s))*dsdu,

Poolt, r) = &2y(t, r) ~

+
BO = _257T/

and for € = 1 (see [7] for technical details of calculation in
the € = 1 case)

2
it )= 5t 7) ~ o Bgﬂw
_ 209301 [roo (£2(€ — 1) p
b= 0 Sy [ (Gemr e
- 2€Z(a’(u))2b(u))du. (23)
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W = O

100

t

Left: The difference between the local power index and the theoretical prediction: n(r = 1,¢) — 3 for € = 0 and n(r =

1,1) = 2(€ + 2) for £ = 1,2, 3, as a function of 1/z. Right: The log-log plots of |¢(z, r = 1)| for € = 0, 1, 2, 3. Both panels correspond
to initial data generated by a(x) = exp(—x2)/+/27 (for ¢,) and b(x) = x* exp(—x?) (for ), with & = 278,

The numerical verification of these formulas is summa-
rized in Fig. 1 and Table 1.
We fit our numerical data with the formula

W(t, r) = Bt Vexp(c/t + d/t?), (24)
which gives the local power index (LPI) [8]
n(t,r)i=—th(t, )/t r) =7y + c/t +2d/2.  (25)

Our fitting procedure proceeds in two steps. First, from the

TABLE 1.

local power index data on the interval 1/¢ = 1/50 (the left
panel of Fig. 1) we fit vy, ¢, and d in (25). Next, having
determined v, ¢, and d in this way, we fit B in (24) from ¢
data on the interval 50 = ¢ (the right panel of Fig. 1). The
results of this procedure are given in Table 1.

It is instructive to compare the tail (23) with the tail of a
massless scalar field propagating on a fixed asymptotically
flat static background. The latter can be readily obtained
from the Duhamel formula (21) applied to the source (20)
with m, = M and B, = —2M/r, where M is the total
mass. The result (valid for all €) reads

The comparison of analytic and numerical decay rates and amplitudes of the tails at

timelike infinity for € = 0, 1, 2, 3, for initial data generated by a(x) = exp(—x2)/~/2m (for ¢;)
and b(x) = x* exp(—x?) (for i), at r = 1. The theoretical prediction is B = £?B,, with B,
given in (22) and B, given in (23) for € = 1. Fits were made on the interval 50 =< ¢ =< 200.

e Numerics: LPI data Theory (third order) Numerics: ¢ data
c d 0% y B B

=0

2712 —3.068 6.056 3.000 3 —5.296 X 10~* —5.293 X 1077

2-10 —3.064 5.877 3.000 3 —8.474 X 1074 —8.468 X 107°

28 —3.064 5.867 3.000 3 —1.356 X 107* —1.355 x 107*

=1

2712 16.73 —134.7 4.008 4 1.084 X 1077 1.145 X 1077

2-10 16.73 —134.7 4.008 4 1.735 X 107° 1.833 X 107°

28 16.73 —134.7 4.008 4 2.776 X 1075 2.932 X 107

(=2

2712 15.87 —139.4 6.005 6 —6.940 X 1077 —7.193 X 1077

2-10 15.87 —139.4 6.005 6 —-1.110 X 1073 —1.151 X 107

278 15.87 —139.4 6.005 6 —1.777 X 107 —1.841 X 10~*

=3

2712 13.28 -110.7 8.012 8 6.023 X 107° 6.525 X 1076

2-10 13.29 —111.0 8.012 8 9.637 X 1073 1.044 X 1074

278 13.31 —111.4 8.012 8 1.542 X 1073 1.669 X 1073
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__ Gt
W em(t, 1) = 2o (26)

Co = (— ) M3 + 1)1 f ™ b(u)du.
This is the celebrated Price tail [5] [as far as we know, first
obtained in the form (26) by Poisson [9]]. It is worth
stressing that the formula (26) yields a good approximation
for the amplitude of the tail provided that both an observer
and initial data lie in a weak field region where M/r is
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small. Note that for € = 0 the formula (22) takes the form
(26) if the total mass M is replaced by the weighted average
over the Bondi mass M(u) = 4 [7%(a'(s))*ds. For € = 1
Price’s tail decays by one power faster than that in (23),
which, on a technical level, is due an extra cancellation in
the integration by parts of Duhamel’s formula.
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