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Piotr Bizoń and Andrzej Rostworowski

M. Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
(Received 17 December 2009; published 27 April 2010)

Consider a spherically symmetric spacetime generated by a self-gravitating massless scalar field � and

let c be a test (nonspherical) massless scalar field propagating on this dynamical background. Gundlach,

Price, and Pullin [Phys. Rev. D 49, 890 (1994).] computed numerically the late-time tails for different

multipoles of the field c and suggested that solutions with compactly supported initial data decay in

accord with Price’s law as t�ð2‘þ3Þ at timelike infinity. We show that in the case of the time-dependent

background dispersing to Minkowski spacetime Price’s law holds only for ‘ ¼ 0 while for each ‘ � 1 the

tail decays as t�ð2‘þ2Þ.
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The Einstein-massless scalar field system

R�� ¼ 8�r��r��; g��r�r�� ¼ 0; (1)

restricted to spherical symmetry, has been serving as an
important theoretical laboratory for the investigation of
nonlinear gravitational phenomena in a rather simple 1þ
1 dimensional setting. For this system Christodoulou
proved that a generic spherically symmetric solution settles
down asymptotically either to Minkowski spacetime (for
small data) [1] or to a Schwarzschild black hole (for large
data) [2]. The first reliable numerical simulations of the
late-time asymptotics of this relaxation process have been
done by Gundlach, Price, and Pullin (GPP) [3]. They found
that, regardless of the end state of evolution, the scalar field
develops a tail that falls off as t�3 near timelike infinity (for
compactly supported initial data).

In a recent paper [4] we revisited this problem to em-
phasize that the asymptotic convergence to a static equi-
librium (Minkowski or Schwarzschild) is an essentially
nonlinear phenomenon that cannot, despite many asser-
tions to the contrary in the literature, be properly described
by the theory of linearized perturbations on a fixed static
asymptotically flat background (Price’s tails [5,6]). This is
particularly evident for dispersive solutions that asymptote
Minkowski spacetime. In that case the quantitative char-
acteristics of the tail (the decay rate and the amplitude) can
be obtained using nonlinear perturbation expansion [4].
Since some details of this formal calculation will be
needed below, let us now briefly summarize it. In the
parametrization

ds2 ¼
�
1� 2mðt; rÞ

r

��1ð�e2�ðt;rÞdt2 þ dr2Þ
þ r2ðd#2 þ sin2#d’2Þ; (2)

the system (1) takes a particularly convenient form (below
an overdot denotes @=@t and a prime denotes @=@r)

m0 ¼ 2�rðr� 2mÞð�02 þ e�2� _�2Þ; (3)

_m ¼ 4�rðr� 2mÞ _��0; (4)

�0 ¼ 2m

rðr� 2mÞ ; (5)

ðe�� _�Þ� ¼ 1

r2
ðr2e��0Þ0: (6)

Consider small and compactly supported initial data

ð�; _�Þt¼0 ¼ ð"fðrÞ; "gðrÞÞ. Then, up to the order Oð"3Þ,
we have

� ¼ "�1 þ "3�3; m ¼ "2m2; � ¼ "2�2; (7)

where �1 satisfies the flat-space radial wave equation

h�1 :¼ €�1 ��00
1 �

2

r
�0

1 ¼ 0;

ð�1; _�1Þt¼0 ¼ ðfðrÞ; gðrÞÞ;
(8)

while the second-order perturbations of the metric func-
tions satisfy

m0
2 ¼ 2�r2ð _�2

1 þ�02
1 Þ; �0

2 ¼
2m2

r2
: (9)

Solving Eq. (8) and then (9) we get for t > R (where R is
the radius of support of initial data)

�1ðt; rÞ ¼ aðt� rÞ
r

; (10)

m2ðt; rÞ ¼ 2�

�
2
Z 1

t�r
a02ðsÞds� a2ðt� rÞ

r

�
; (11)

�2ðt; rÞ ¼ 4�

�
� 2

r

Z 1

t�r
a02ðsÞdsþ 2

Z 1

t�r

a02ðsÞ
t� s

ds

�
Z 1

t�r

a2ðsÞ
ðt� sÞ3 ds

�
; (12)

where the initial-data-generating function aðuÞ vanishes
for juj> R. The third-order perturbation of the scalar field
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�3 satisfies the inhomogeneous wave equation (with zero
initial data)

h�3 ¼ 2�2
€�1 þ _�2

_�1 þ �0
2�

0
1 ¼: Sðt; rÞ: (13)

The source Sðt; rÞ is already known from (10)–(12) so we
can use the Duhamel formula

�3ðt; rÞ ¼ 1

2r

Z t

0
d�

Z tþr��

jt�r��j
�Sð�; �Þd� (14)

to obtain the asymptotic behavior for large retarded times

�ðt; rÞ ’ "3�3ðt; rÞ � "3�0t

ðt2 � r2Þ2 ;

�0 ¼ �25�
Z þ1

�1
aðuÞ

Z þ1

u
ða0ðsÞÞ2dsdu:

(15)

We refer the reader to [4] for more details about this
calculation and numerical evidence.

After this introduction, we are ready to discuss an inter-
esting model for investigating linear nonspherical tails on a
fixed dynamical background. This model, proposed by
GPP [3], involves a nonspherical test massless scalar field
c , which propagates on the spacetime (2) generated by the
self-gravitating field �. Since the dynamics of c is linear
and the background is spherically symmetric, one may
decompose c into spherical harmonics

c ðt; r; #; ’Þ ¼ X
‘�0;jmj�‘

c ‘mðt; rÞYm
‘ ð#;’Þ; (16)

and analyze the evolution of each multipole separately,

ðe�� _c ‘mÞ� � 1

r2
ðr2e�c 0

‘mÞ0 þ e�
‘ð‘þ 1Þ
rðr� 2mÞ c ‘m ¼ 0:

(17)

GPP conjectured1 that for compactly supported initial data

the multipoles have the tail c ‘mðt; rÞ � t�ð2‘þ3Þ at timelike
infinity (t ! 1 at a fixed r), in accord with Price’s law on a
fixed Schwarzschild background, even though the actual
spherical background is time dependent and its Bondi mass
decreases (to a positive value in the collapsing case or to
zero in the dispersive case). It seems that GPP’s conjecture
was based more on belief than numerical evidence, be-
cause for the first few multipoles the following power-law
exponents of the tail were reported numerically (see
Fig. 12 in [3]):�2:77 (‘ ¼ 0),�3:95 (‘ ¼ 1),�5:94 (‘ ¼
2), and �8:34 (‘ ¼ 3).

The purpose of this note is to point out that in this model
(and for other time-dependent backgrounds) Price’s law

(i.e., t�ð2‘þ3Þ decay) holds only for ‘ ¼ 0, while for ‘ � 1
the power-law exponent of the tail is equal to �ð2‘þ 2Þ
(as was clearly indicated by GPP’s own numerics). To

show that, we shall compute the late-time asymptotic
behavior of c ‘mðt; rÞ (for smooth initial data compactly
supported in a ball of radius R0) along similar lines as
described above for the field �. Since our method is
perturbative in nature, the quantitative results presented
here are restricted to weakly curved dynamical back-
grounds close to Minkowski spacetime.
The perturbation expansion for the test field has the form

c ‘m ¼ c 0 þ "2c 2 þ � � � , where for convenience of no-
tation we dropped the multipole indices on iterates. At the
zero order we have

hð‘Þc 0 :¼ €c 0 � c 00
0 �

2

r
c 0

0 þ
‘ð‘þ 1Þ

r2
c 0 ¼ 0;

ðc 0; _c 0Þt¼0 ¼ ðc ‘m; _c ‘mÞt¼0; (18)

which for t > R0 is solved by

c 0ðt; rÞ ¼ 1

r

Xl
k¼0

ð2‘� kÞ!
k!ð‘� kÞ!

bðkÞðt� rÞ
ð2rÞ‘�k

; (19)

where the initial-data-generating function bðuÞ vanishes
for juj>R0 (the superscript in round brackets denotes
the kth derivative). At the second order we get

hð‘Þc 2 ¼ 2�2
€c 0 þ _�2

_c 0 þ�0
2c

0
0 �

2‘ð‘þ 1Þm2

r3
c 0

¼: S‘ðt; rÞ;
ðc 2; _c 2Þt¼0 ¼ ð0;0Þ: (20)

Substituting (11), (12), and (19) into the Duhamel formula
[where P‘ðxÞ is the Legendre polynomial of degree ‘]

c 2ðt; rÞ ¼ 1

2r

Z t

0
d�

Z tþr��

jt�r��j
�P‘

�
r2 þ �2 � ðt� �Þ2

2r�

�

� S‘ð�; �Þd�; (21)

we get (for large retarded times) for ‘ ¼ 0

c 00ðt; rÞ ’ "2c 2ðt; rÞ � "2B0t

ðt2 � r2Þ2 ;

B0 ¼ �25�
Z þ1

�1
bðuÞ

Z þ1

u
ða0ðsÞÞ2dsdu;

(22)

and for ‘ � 1 (see [7] for technical details of calculation in
the ‘ � 1 case)

c ‘mðt; rÞ ’ "2c 2ðt; rÞ � "2B‘r
‘

ðt2 � r2Þ‘þ1
;

B‘ ¼ ð�1Þ‘ 2
‘þ3‘!�

2‘þ 1

Z þ1

�1

�
‘2ð‘� 1Þ
2‘� 1

a2ðuÞb00ðuÞ

� 2‘2ða0ðuÞÞ2bðuÞ
�
du: (23)

1GPP considered the characteristic initial value problem while
we were studying the Cauchy problem; however, this difference
does not affect the asymptotics of tails.
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The numerical verification of these formulas is summa-
rized in Fig. 1 and Table I.

We fit our numerical data with the formula

c ðt; rÞ ¼ Bt�� expðc=tþ d=t2Þ; (24)

which gives the local power index (LPI) [8]

nðt; rÞ :¼ �t _c ðt; rÞ=c ðt; rÞ ¼ �þ c=tþ 2d=t2: (25)

Our fitting procedure proceeds in two steps. First, from the

local power index data on the interval 1=t � 1=50 (the left
panel of Fig. 1) we fit �, c, and d in (25). Next, having
determined �, c, and d in this way, we fit B in (24) from c
data on the interval 50 � t (the right panel of Fig. 1). The
results of this procedure are given in Table I.
It is instructive to compare the tail (23) with the tail of a

massless scalar field propagating on a fixed asymptotically
flat static background. The latter can be readily obtained
from the Duhamel formula (21) applied to the source (20)
with m2 ¼ M and �2 ¼ �2M=r, where M is the total
mass. The result (valid for all ‘) reads
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FIG. 1. Left: The difference between the local power index and the theoretical prediction: nðr ¼ 1; tÞ � 3 for ‘ ¼ 0 and nðr ¼
1; tÞ � 2ð‘þ 2Þ for ‘ ¼ 1, 2, 3, as a function of 1=t. Right: The log-log plots of jc ðt; r ¼ 1Þj for ‘ ¼ 0, 1, 2, 3. Both panels correspond
to initial data generated by aðxÞ ¼ expð�x2Þ= ffiffiffiffiffiffiffi

2�
p

(for �1) and bðxÞ ¼ x2 expð�x2Þ (for c 0), with " ¼ 2�8.

TABLE I. The comparison of analytic and numerical decay rates and amplitudes of the tails at
timelike infinity for ‘ ¼ 0, 1, 2, 3, for initial data generated by aðxÞ ¼ expð�x2Þ= ffiffiffiffiffiffiffi

2�
p

(for �1)
and bðxÞ ¼ x2 expð�x2Þ (for c 0), at r ¼ 1. The theoretical prediction is B ¼ "2B‘, with B0

given in (22) and B‘ given in (23) for ‘ � 1. Fits were made on the interval 50 � t � 200.

" Numerics: LPI data Theory (third order) Numerics: c data

c d � � B B
‘ ¼ 0
2�12 �3:068 6.056 3.000 3 �5:296� 10�4 �5:293� 10�7

2�10 �3:064 5.877 3.000 3 �8:474� 10�4 �8:468� 10�6

2�8 �3:064 5.867 3.000 3 �1:356� 10�4 �1:355� 10�4

‘ ¼ 1
2�12 16.73 �134:7 4.008 4 1:084� 10�7 1:145� 10�7

2�10 16.73 �134:7 4.008 4 1:735� 10�6 1:833� 10�6

2�8 16.73 �134:7 4.008 4 2:776� 10�5 2:932� 10�5

‘ ¼ 2
2�12 15.87 �139:4 6.005 6 �6:940� 10�7 �7:193� 10�7

2�10 15.87 �139:4 6.005 6 �1:110� 10�5 �1:151� 10�5

2�8 15.87 �139:4 6.005 6 �1:777� 10�4 �1:841� 10�4

‘ ¼ 3
2�12 13.28 �110:7 8.012 8 6:023� 10�6 6:525� 10�6

2�10 13.29 �111:0 8.012 8 9:637� 10�5 1:044� 10�4

2�8 13.31 �111:4 8.012 8 1:542� 10�3 1:669� 10�3

NOTE ABOUT LATE-TIME WAVE TAILS ON A . . . PHYSICAL REVIEW D 81, 084047 (2010)

084047-3



c ‘mðt; rÞ � C‘r
‘t

ðt2 � r2Þ‘þ2
;

C‘ ¼ ð�1Þ‘þ1M2‘þ3ð‘þ 1Þ!
Z þ1

�1
bðuÞdu:

(26)

This is the celebrated Price tail [5] [as far as we know, first
obtained in the form (26) by Poisson [9] ]. It is worth
stressing that the formula (26) yields a good approximation
for the amplitude of the tail provided that both an observer
and initial data lie in a weak field region where M=r is

small. Note that for ‘ ¼ 0 the formula (22) takes the form
(26) if the total massM is replaced by the weighted average
over the Bondi massMðuÞ ¼ 4�

Rþ1
u ða0ðsÞÞ2ds. For ‘ � 1

Price’s tail decays by one power faster than that in (23),
which, on a technical level, is due an extra cancellation in
the integration by parts of Duhamel’s formula.
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