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Convergence towards a self-similar solution for a nonlinear wave equation: A case study
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We consider the problem of asymptotic stability of a self-similar attractor for a simple semilinear radial
wave equation which arises in the study of the Yang-Mills equations in 5� 1 dimensions. Our analysis
consists of two steps. In the first step we determine the spectrum of linearized perturbations about the
attractor using a method of continued fractions. In the second step we demonstrate numerically that the
resulting eigensystem provides an accurate description of the dynamics of convergence towards the
attractor.
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I. INTRODUCTION

Self-similar solutions of evolution equations often ap-
pear as attractors in a sense that solutions of an initial value
problem starting from generic initial data evolve asymp-
totically into a self-similar form. In such cases one would
like to describe the process of convergence to the self-
similar solution and understand the mechanism responsible
for this phenomenon. These kind of problems are relatively
well-understood for diffusion equations where the global
dissipation of energy is the mechanism of convergence to
an attractor (see [1] for a recent survey), however very little
is known for conservative wave equations where the local
dissipation of energy is due to dispersion. In this paper we
report on analytical and numerical studies of this problem
for a semilinear radial wave equation of the form

utt � urr �
2

r
ur �

f�u�

r2
� 0; (1)

where r is the radial variable, u � u�t; r�, and f�u� �
�3u�1� u2�. This equation appears in the study of the
spherically symmetric Yang-Mills equations in 5� 1 di-
mensions (see [2] for the derivation). We remark in passing
that our results hold for more general nonlinearities, in
particular, for f�u� � sin�2u� which corresponds to the
equivariant wave maps from the 3� 1 dimensional
Minkowski spacetime into the three-sphere.

It was proved in [3] and later found explicitly in [2] that
Eq. (1) has a self-similar solution

u�t; r� � U0��� �
1� �2

1� 3
5�

2
; (2)

where � � r=�T � t� is a similarity variable and T > 0 is a
constant [actually, U0 is the ground state of a countable
family of self-similar solutions Un (n � 0; 1; . . . ) but since
all n > 0 solutions are unstable they do not appear as
attractors for generic initial data]. Since
05=72(4)=045013(5)$23.00 045013
@2rU0���jr�0 �
1

�T � t�2
; (3)

the solution U0��� becomes singular at the center when
t! T. By the finite speed of propagation, one can truncate
this solution in space to get a smooth solution with com-
pactly supported initial data which blows up in finite time.

In fact, the self-similar solutionU0 is not only an explicit
example of singularity formation, but more importantly it
appears as an attractor in the dynamics of generic initial
data. We conjectured in [4] that generic solutions of Eq. (1)
starting with sufficiently large initial data do blow up in a
finite time in the sense that urr�t; 0� diverges at t % T for
some T > 0 and the asymptotic profile of blowup is uni-
versally given by U0, that is

lim
t%T
u�t; �T � t�r� � U0�r�: (4)

Figure 1 shows the numerical evidence supporting this
conjecture.

The goal of this paper is to describe in detail how the
limit (4) is attained. To this end, in Sec. II we first study the
linear stability of the solution U0. This leads to an eigen-
value problem which is rather unusual from the standpoint
of spectral theory of linear operators. We solve this prob-
lem in Sec. III using the method of continued fractions.
Then, in Sec. IV we present the numerical evidence that the
deviation of the dynamical solution from the self-similar
attractor is asymptotically well described by the least
damped eigenmode.
II. LINEAR STABILITY ANALYSIS

The role of the self-similar solution U0 in the evolution
depends crucially on its stability with respect to small
perturbations. In order to analyze this problem it is conve-
nient to define the new time coordinate � � � ln�T � t�
and rewrite Eq. (1) in terms of U��; �� � u�t; r�
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FIG. 1. The upper plot shows the late time evolution of some
large initial data which blow up at time T. As the blowup
progresses, the inner solution gradually attains the form of the
stable self-similar solution U0�r=�T � t��. The outer solution
appears frozen on this time scale. In the lower plot the rescaled
solutions u�t; �T � t�r� are shown to collapse to the profile U0�r�
(solid line).

1If 1� � is a positive integer N, then the solution which is
analytic at � � 1 behaves as v1 � �1� ��n�N while the second
solution v2 involves the logarithmic term CNv1 ln�1� ��. By a
straightforward but tedious calculation one can check that the
coefficient CN is nonzero for all N.
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U���U��2�U����1��2�
�
U���

2

�
U�

�
�
f�U�

�2
�0:

(5)

In these variables the problem of finite time blowup is
converted into the problem of asymptotic convergence
for �! 1 towards the stationary solution U0���.
Following the standard procedure we seek solutions of
Eq. (5) in the form U��; �� � U0��� � w��; ��.
Neglecting the O�w2� terms we obtain a linear evolution
equation for the perturbation w��; ��

w���w��2�w����1��2�
�
w���

2

�
w�

�
�
f0�U0�

�2
w�0:

(6)

Substituting w��; �� � e��v���=� into (6) we get the ei-
genvalue equation
045013
��1� �2�v00 � 2��v0 � ���� 1�v�
V���

�2
v � 0; (7)

where

V��� � f0�U0� �
6�25� 90�2 � 33�4�

�5� 3�2�2
: (8)

We consider Eq. (7) on the interval 0 � � � 1, which
corresponds to the interior of the past light cone of the
blowup point �t � T; r � 0�. Since a solution of the initial
value problem for Eq. (1) starting from smooth initial data
remains smooth for all times t < T, we demand the solu-
tion v��� to be analytic at the both end points � � 0 (the
center) and � � 1 (the past light cone). Such a globally
analytic solution of the singular boundary value problem
can exist only for discrete values of the parameter �,
hereafter called eigenvalues. In order to find the eigenval-
ues we apply the method of Frobenius [5].

The indicial exponents at the regular singular point � �
0 are 3 and �1, hence the solution which is analytic at � �
0 has the power series representation

v0��� �
X1
n�0

an����2n�3; a0 � 0: (9)

Since the nearest singularity in the complex � plane is at
� � 1, the series (9) is absolutely convergent for 0 � � <
1. At the second regular singular point, � � 1, the indicial
exponents are 0 and 1� � so, as long as � is not an integer,
the two linearly independent solutions have the power
series representations

v1��� �
X1
n�0

b�1�n ����1� ��n;

v2��� �
X1
n�0

b�2�n ����1� ��n�1��:

(10)

These series are absolutely convergent for 0< � � 1. If �
is not an integer, only the solution v1��� is analytic at � �
1. From the theory of linear ordinary differential equations
we know that the three solutions v0���, v1���, and v2���
are connected on the interval 0< �< 1 by the linear
relation1

v0��� � A���v1��� � B���v2���: (11)

The requirement that the solution which is analytic at � �
0 is also analytic at � � 1 serves as the quantization
condition for the eigenvalues B��� � 0. Unfortunately,
-2
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FIG. 2. The Wronskian Wv0; v1��� � 1=2; ��.
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the explicit expressions for the connection coefficients
A��� and B��� are not known for equations with more
than three regular singular points. There are, however,
other indirect methods of solving the equation B��� � 0.
One of them is a shooting method which goes as follows.
One approximates the solutions v0��� and v1��� by the
power series (9) and (10), respectively, truncated at some
045013
sufficiently large n, and then computes the Wronskian of
these solutions at a midpoint, say � � 1=2. The zeros of
the Wronskian correspond to the eigenvalues (see Fig. 2).
Although this method gives the eigenvalues with reason-
able accuracy, it is computationally very costly, especially
for large negative values of �, because the power series (9)
and (10) converge very slowly. We point out that shooting
towards � � 1 fails completely for large negative � be-
cause the solution v2��� is subdominant at � � 1, that is, it
is negligible with respect to the analytic solution v1���.

III. THE CONTINUED FRACTIONS METHOD

In this section we shall solve the eigenvalue problem (7)
using a method continued fractions. The key idea is to
determine the analyticity properties of the power series
solution v0��� from the asymptotic behavior of the expan-
sion coefficients an. Substituting the power series (9) into
Eq. (7) we get the four-term recurrence relation (with the
initial conditions a0 � 1 (normalization) and an � 0 for
n < 0)

p3�n�an�3 � p2�n�an�2 � p1�n�an�1 � p0�n�an � 0;

(12)

where
p3�n� � �100n2 � 850n� 1650; p2�n� � �20n2 � �100�� 130�n� 25�2 � 325�� 750;

p1�n� � 84n2 � �120�� 378�n� 30�2 � 270�� 618; p0�n� � 36n2 � �36�� 90�n� 9�2 � 45�� 54:
For n � �2 we have

�350a1 � �25�2 � 125�� 570�a0 � 0; (13)

and for n � �1

�900a2 � �25�2 � 225�� 640�a1

� �30�2 � 150�� 324�a0 � 0: (14)

The series (9) is absolutely convergent for 0 � � < 1 and
in general is divergent for � > 1. In order to determine the
analyticity properties of the solution v0��� at � � 1 we
need to find the large n behavior of the expansion coef-
ficients an. The four-term recurrence relation (12) can be
viewed as the third order difference equation so it has three
linearly independent asymptotic solutions for n! 1.
Following standard methods (see, for example, [6]) we find

a�1�n � n��2
X1
s�0

��1�
s

ns
; a�2�n �

�
�
3

5

�
n
n
X1
s�0

��2�
s

ns
;

a�3�n �

�
�
3

5

�
n
n�4

X1
s�0

��3�
s

ns
:

(15)

Thus, in general, the solution of the recurrence relation
(12) behaves asymptotically as
an � c1���a
�1�
n � c2���a

�2�
n � c3���a

�3�
n : (16)

If the coefficient c1��� is nonzero then

an�1

an
�
a�1�n�1

a�1�n
! 1 as n! 1; (17)

hence the power series (9) is divergent for � > 1 (in fact it
has a branch point singularity at � � 1). On the other hand,
if c1��� � 0 then the solution v0��� can be continued
analytically through � � 1. The advantage of replacing
the quantization condition B��� � 0 in the connection
formula (11) by the equivalent condition c1��� � 0 follows
from the fact that c1��� is the coefficient of the dominant
solution in (16), in contrast to B��� which is the coefficient
of the subdominant solution in (11).

Now, we shall find the zeros of the coefficient c1���
using the method of continued fractions. This method is
based on an intimate relationship between three-term re-
currence relations and continued fractions. It goes as fol-
lows. Suppose that we have a three-term recurrence
relation (a second order difference equation)

bn�2 � Anbn�1 � Bnbn � 0: (18)

Let rn � bn�1=bn. Then, from (18) we have
-3



TABLE I. The first 12 eigenvalues.

n 0 1 2 3 4 5
�n 1 �0:588 904 �2:181 597 �3:570 756 �5:043 294 �6:486 835

n 6 7 8 9 10 11
�n �7:912 777 �9:298 265 �9:907 103 �10:792 456 �12:153 033 �13:164 487

PIOTR BIZOŃ AND TADEUSZ CHMAJ PHYSICAL REVIEW D 72, 045013 (2005)
rn � �
Bn

An � rn�1
;

and applying this formula repeatedly we get the continued
fraction representation of rn

rn � �
Bn
An�

Bn�1

An�1�

Bn�2

An�2�
� � � : (19)

A theorem due to Pincherle [6] says that the continued
fraction on the right hand side of Eq. (19) converges if and
only if the recurrence relation (18) has a minimal solution
bmin
n , i.e. the solution such that limn!1bmin

n =bn � 0 for any
other solution bn. Moreover, in the case of convergence,
Eq. (19) holds with rn � bmin

n�1=b
min
n for each n.

We cannot yet apply this theorem because our recur-
rence relation (12) has four terms. However, let us observe
that

an � a
exact
n �

�
�
3

5

�
n
�
n� 1�

5

16
��� 1�

�
(20)

is the exact solution of our four-term recurrence relation
(12) (although it does not satisfy the initial conditions).
Using this solution we can reduce the order by the sub-
stitution (cf. [7] for an alternative way of reducing the
order)

bn � an�1 �
3

5

n� 2� 5
16 ��� 1�

n� 1� 5
16 ��� 1�

an (21)

to get the three-term recurrence relation

q2�n�bn�2 � q1�n�bn�1 � q0�n�bn � 0; (22)

where (using the abbreviation " � 5��� 1�=16)

q0�n� � p1�n� �
3

5

n� 3� "
n� 2� "

p2�n�

�

�
3

5

�
2 n� 4� "
n� 2� "

p3�n�;

q1�n� � p2�n� �
3

5

n� 4� "
n� 3� "

p3�n�; q2�n� � p3�n�:

The two linearly independent asymptotic solutions of the
recurrence relation (22) are

b�1�n � n��2
X1
s�0

#�1�
s

ns
; a�2�n � ��

3

5
�nn�5

X1
s�0

#�2�
s

ns
; (23)

so in general
045013
bn � C1���b
�1�
n � C2���b

�2�
n : (24)

Now, our quantization condition c1��� � 0 is equivalent to
C1��� � 0 which is nothing else but the condition for the
existence of a minimal solution for Eq. (22). Thus, we can
use Pincherle’s theorem to find the eigenvalues.

In our case An � q1�n�=q2�n� and Bn � q0�n�=q2�n�.
From (13) and (21) we get

b0 �
�
25�2 � 125�� 570

350
�

96� 15��� 1�

80� 25��� 1�

�
a0;

b�1 � a0:

(25)

Using Pincherle’s theorem and setting n � �1 in (19) we
obtain the eigenvalue equation

b0
b�1

�
25�2 � 125�� 570

350
�

96� 15��� 1�

80� 25��� 1�

� �
B�1���
A�1����

B0���
A0����

B1���
A1����

� � � : (26)

The continued fraction in (26), which by Pincherle’s theo-
rem is convergent for any �, can be approximated with
essentially arbitrary accuracy by downward recursion start-
ing from a sufficiently large n � N and some (arbitrary)
initial value rN . The roots of the transcendental Eq. (26) are
then found numerically (see Table I).

We recall from [2] that the eigenvalue �0 � 1 is due to
the freedom of changing the blowup time T. Although this
eigenvalue is positive, it should not be interpreted as the
physical instability of the solution U0—it is an artifact of
introducing the similarity variables and does not show up
in the dynamics for u�t; r�. Note that, strangely enough, all
the eigenvalues are real.
IV. CONVERGENCE TO THE ATTRACTOR

According to the linear stability analysis presented
above the convergence of the solution u�t; r� towards the
self-similar attractor U0 should be described by the for-
mula

u�t; r� � U0��� �
X
k�1

cke
�k�vk���=��U0���

� c1e�1�v1���=� as �! 1; (27)

where vk���=� are the eigenmodes corresponding to the
eigenvalues �k and ck are the expansion coefficients. In
order to verify the formula (27) we solved Eq. (1) numeri-
-4
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FIG. 5. The same plot as in Fig. 4 but at an earlier moment of
time. The solid line showing the least damped eigenmode (with
the same coefficient c1 as before) does not fit well the numerical
data because the other modes have not yet decayed. Including
the suitably normalized second eigenfunction in the expansion
(27) we get a much better fit (dashed line). We remark that a few
first eigenvalues can be obtained directly from (27) by solving
numerically the linearized evolution Eq. (6) [8].
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FIG. 3. In this figure we determine the coefficient c1 in the
formula (27) as follows. Taking the second derivative of (27) at
r � 0 we obtain �T � t�2urr�t; r � 0� � 16=5 � 2c1�T � t���1 .
For small T � t we plot the left hand side of this equation in the
log-log scale and fit the parameters c1 and �1. We get c1 �
�0:031 436 and �1 � �0:588 03 (in good agreement with
Table I).
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cally for large initial data leading to blowup, expressed the
solution in the similarity variables, and computed the
deviation from U0 for t % T. Figures 3 and 4 show that
for small T � t the deviation from U0 is very well de-
scribed by the least damped eigenmode v1, in agreement
with the formula (27). For larger T � t the contribution of
higher modes has to be included (see Fig. 5).
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