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Exact lowest-Landau-level solutions for vortex precession in Bose-Einstein condensates
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The lowest Landau level (LLL) equation emerges as an accurate approximation for a class of dynamical
regimes of Bose-Einstein condensates (BEC) in two-dimensional isotropic harmonic traps in the limit of weak
interactions. Building on recent developments in the field of spatially confined extended Hamiltonian systems,
we find a fully nonlinear solution of this equation representing periodically modulated precession of a single
vortex. Motions of this type have been previously seen in numerical simulations and experiments at moderately
weak coupling. Our paper provides a controlled analytic prediction for trajectories of a single vortex, suggests
new targets for experiments, and opens up the prospect of finding analytic multivortex solutions.
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I. INTRODUCTION

Since the discovery of Bose-Einstein condensates (BEC)
in ultracold atomic gases, considerable experimental and
theoretical work has been devoted to their properties in the
presence of rotation, which leads to formation of quantized
vortices (for reviews, see Refs. [1–3]). While certain stationary
configurations of vortices have been a subject of semianalytic
and analytic investigations [4–6], to the best of our knowledge
results on nonlinear motions of vortices have so far involved
either numerics or approximations [7–12]. In this paper,
we show that analytic progress can be made by drawing
inspiration from recent developments in the field of spatially
confined extended Hamiltonian systems [13–16], which have
not thus far surfaced in the BEC literature. As a first step,
we find analytic solutions describing periodically modulated
precession of a single vortex. We believe that a systematic
generalization of our approach will eventually be used to study
multivortex dynamics, a question of great appeal from both
phenomenological and mathematical perspective.

In situations relevant for us here, one considers Bose-
Einstein condensates narrowly confined in one spatial direc-
tion, so that the dynamics is effectively two-dimensional. In
this two-dimensional xy plane, the condensate is placed in an
isotropic harmonic potential known as the ‘trap.’ The system
is described by the Gross-Pitaevskii (GP) equation for the
condensate wave function �(t,x,y)

i∂t� = 1
2

(−∂2
x − ∂2

y + x2 + y2
)
� + g|�|2�, (1)

where g is a dimensionless coupling constant, proportional to
the atomic scattering length and the total number of atoms
(we impose

∫ |�|2dxdy = 1). Our focus will be on studying
this equation in the weakly nonlinear regime 0 < g � 1 [17].
Positions of condensate vortices are given by the zeros of �.

II. THE RESONANT APPROXIMATION

A key feature for the weakly nonlinear dynamics of (1) is
that the eigenmodes of the linearized problem (g = 0) oscillate
with integer frequencies, and consequently arbitrarily small

nonlinearities produce significant effects over long times, due
to the presence of resonances. To deal with this situation,
the time-averaging method [18] is particularly suitable. One
starts by going to the interaction picture, which amounts to
expanding � in the form

�(t,r,φ) =
∑
nm

αnm(t) e−iEnt eimφχnm(r), (2)

where eimφχnm(r) are normalized isotropic harmonic oscillator
eigenstates of energy En = n + 1 and angular momentum m ∈
{−n, − n + 2, . . . ,n − 2,n}. Substituting (2) to (1), one gets

i
dαnm

dt
=g

∑
n1,n2,n3�0

m+m1=m2+m3

Cmm1m2m3
nn1n2n3

ᾱn1m1αn2m2αn3m3e
−iEt , (3)

where the interaction coefficients C are expressible through
integrals of products of the eigenfunctions χnm and E =
En + En1 − En2 − En3 . The terms with E = 0 correspond to
resonant interactions while those with E �= 0 are nonresonant.
Time-averaging consists of introducing the slow time τ = gt

and dropping in (3) all nonresonant terms, which oscillate
rapidly in terms of τ . The resulting equation (called the
time-averaged or the resonant system) takes the form

i α̇nm =
∑

n+n1=n2+n3
m+m1=m2+m3

Cmm1m2m3
nn1n2n3

ᾱn1m1αn2m2αn3m3 , (4)

where from here onward an overdot denotes d/dτ .
It can be proved that for sufficiently small g the resonant

system (4) provides an accurate approximation to the original
system within any time interval of order 1/g [18]. More
specifically, for any given T there exist finite c and g1 such
that the norm of the difference between solutions to (3) and (4)
starting with the same initial conditions at t = 0 will remain
uniformly smaller than cg at all times t < T/g for any g < g1.
(In more qualitative terms, any given error standard can be met
by our approximation on long time intervals by lowering the
coupling to a sufficiently small, finite value.) Note that this
property is highly nontrivial, since resonant interactions can
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produce effects of order 1 on time scales of order 1/g for
arbitrarily small g. The key feature of the approach taken here
is that (4) correctly keeps track of resonant interactions, while
nonresonant interactions produce only contributions of order
g on time scales of order 1/g. Some pedagogical comments on
time averaging can be found in Ref. [19], and its application
to spherically symmetric solutions of (1) can be found in
Ref. [20]. We note that the time-averaging method and studies
of the resulting resonant systems is part of the standard lore
in nonlinear science and PDE analysis, but to the best of our
knowledge these methods have not been applied extensively
thus far in the context of BEC dynamics in harmonic traps. One
of our aims here is to demonstrate that such applications are
fruitful. (As examples of significant applications of resonant
systems in the field of PDE analysis, see Refs. [21,22].)

III. THE LOWEST LANDAU LEVEL TRUNCATION

The fact that the sum in (4) is constrained by the resonance
condition n + n1 = n2 + n3 and angular momentum conser-
vation m + m1 = m2 + m3 guarantees that if only modes with
m = n are excited in the initial state, no other modes will get
excited in the course of evolution. These maximally rotating
modes are known as the lowest Landau level (LLL) modes due
to analogies with motion of a charged particle in a constant
magnetic field [3]. Restricting (4) to these modes results in the
LLL equation [14,15]

iα̇n =
∞∑

j=0

n+j∑
k=0

Snjk,n+j−kᾱjαkαn+j−k, (5)

where αn ≡ αnn, and the interaction coefficients S are given by

Snjk,n+j−k = 1

2π

(n + j )!

2n+j
√

n!j !k!(n + j − k)!
. (6)

We remark that projecting on LLL modes is most commonly
used as a variational ansatz for the condensate ground states
[4,5]. In contrast, we are using it to discuss fully dynamical
solutions of (1), and the approximation provided by the LLL
equation (5) is protected by precise mathematical results on
time averaging. More specifically, (5) is a consistent truncation
of (4) and, starting from initial conditions containing only
LLL modes, no non-LLL modes will be generated at any
future times in the evolution defined by (4). Furthermore,
(4) approximates the full Gross-Pitaevskii equation (3) in the
precise mathematical sense we have outlined above. Hence,
if one evolves initial data containing only LLL modes with
the full Gross-Pitaevskii system in the weak coupling regime
g � 1, it is guaranteed that the amplitudes of non-LLL modes
will remain small (of order g) over long time scales (of
order 1/g). We emphasize that this picture of LLL decoupling
presents a significant improvement in terms of rigor over the
usual heuristic energy-ratio estimates in the style of Ref. [4].
We note furthermore that a straightforward generalization of
our arguments demonstrates consistent decoupling of any other
Landau level in the weak coupling regime and, more generally,
of any subset of modes in (3) satisfying n = cm + d with
arbitrary c and d. (Such decoupling, while being a consequence
of mathematical theorems in our context, would be very

difficult to justify by the conventional heuristics based on
differences of level energies.)

The LLL equation is structurally similar to many other
interesting equations arising in mathematical physics. Ex-
amples include the cubic Szegő equation [13] studied as an
integrable model of weak turbulence, the resonant system
[19,23] for weakly nonlinear perturbations of Anti-de Sitter
spacetime [24–26], or the conformal flow [16] describing
weakly nonlinear solutions of the conformally coupled cubic
wave equation on a 3-sphere. Our subsequent analysis of the
LLL equation will display intriguing parallels to some of
these systems. (We note that the Gross-Pitaevskii equation (1)
emerges as a nonrelativistic limit of wave equations in anti-de
Sitter spacetime [27], see also Ref. [20]. This limit underlies
some of the structural parallels we have just mentioned.)

It is convenient to introduce a complex variable z = x + iy,
and the critically rotating frame, which rotates around the
origin with angular velocity 1 (in this frame, the centrifugal
force exactly cancels the harmonic trapping force). The most
general LLL wave function in this frame can be expressed
through αn as

ψ =
∞∑

n=0

αn(τ )χn(z), χn(z) = zn

√
πn!

e− 1
2 |z|2 . (7)

Here, χn(z) = einφχnn(r), and ψ is related to the laboratory
frame wave function � by ψ(τ,z) = eit�(t,eit z). In terms of
ψ , equation (5) reads [14]

iψ̇ = 
(|ψ |2ψ), (8)

where 
 is the orthogonal projector on the LLL space, given
explicitly by

(
ψ)(z) = 1

π
e− 1

2 |z|2
∫
R2

ez̄′z− 1
2 |z′|2ψ(z′) dx ′dy ′. (9)

The LLL equation is Hamiltonian with

H = 1

2

∫
R2

|ψ |4dxdy

= 1

2

∞∑
n=0

∞∑
j=0

n+j∑
k=0

Snjk,n+j−kᾱnᾱjαkαn+j−k. (10)

In addition to the time-translation invariance, the LLL
equation is invariant under phase rotations, space rotations,
and ‘magnetic translations:’

ψ(τ,z) → eiθψ(τ,z), (11)

ψ(τ,z) → ψ(τ,eiϕz), (12)

ψ(τ,z) → ψ(τ,z − q)e
1
2 (q̄z−qz̄), (13)

where θ,ϕ are real valued, and q is complex valued. Via
Noether’s theorem, these symmetries give rise to three con-
served quantities, particle number N , angular momentum J ,
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and dipole moment Z:

N =
∫
R2

|ψ |2 dxdy =
∞∑

n=0

|αn|2, (14)

J =
∫
R2

(|z|2 − 1)|ψ |2 dxdy =
∞∑

n=0

n|αn|2, (15)

Z =
∫
R2

z|ψ |2 dxdy =
∞∑

n=0

√
n + 1 αnᾱn+1. (16)

The LLL equation is also invariant under scaling ψ(τ,z) →
c ψ(|c|2τ,z) but this symmetry will play no role here because
the scale is fixed by our choice of normalization N = 1.

Note that each single mode χn(z) gives rise to a stationary
solution of the LLL equation

ψ(τ,z) = χn(z)e−iλnτ , λn = 1

2π

(2n)!

22n(n!)2
. (17)

Acting on these single-mode solutions with the symmetries,
one gets two-parameter families

ψ(τ,z) = (z − q)n√
πn!

eq̄z− 1
2 |q|2+iθ e− 1

2 |z|2e−iλnτ . (18)

The n = 0 Gaussian family is distinguished by the fact that it
saturates Carlen’s inequality [28]

∫
R2

|ψ |4dxdy � 1

2π

(∫
R2

|ψ |2dxdy

)2

, (19)

hence it maximizes H for fixed N . As a consequence, this
Gaussian state is orbitally stable [14].

IV. DYNAMICAL SOLUTIONS

We now turn to nontrivial dynamical solutions of the LLL
equation, which are the principal element in our presentation.
The key observation is that the following single vortex ansatz

ψ(τ,z) = (b(τ ) + a(τ )z) ep(τ )z e− 1
2 |z|2 , (20)

where b(τ ), a(τ ) and p(τ ) are complex-valued functions, is
consistent with the LLL equation in the sense that it is
preserved by the flow. To show this, expand (20) according
to (7) to get

αn =
√

π

n!

(
b + an

p

)
pn. (21)

Substituting this expression in (5), dividing both sides by
pn/

√
n! and using the summation identities

M∑
m=0

M!

m!(M − m)!
mA = (ξ ∂ξ )A (1 + ξ )M |ξ=1, (22)

∞∑
m=0

ξm

m!
mA = (ξ ∂ξ )Aeξ , (23)

one reduces both sides of (5) to quadratic polynomials in n.
Equating the three coefficients of these polynomials results in

three ordinary differential equations for p(τ ),a(τ ),b(τ ):

8iṗ= (ab̄+|a|2p)e|p|2 , (24)

8iȧ= [2(1+|p|2)|a|2+3bpā+2b̄p̄a+3|b|2]ae|p|2 , (25)

8iḃ= (2b+ap̄)[(2+|p|2)|a|2+2ābp+ab̄p̄+2|b|2]e|p|2 .

(26)

These equations could have been alternatively derived by
inserting the ansatz (20) into equation (8) and evaluating the
integral on the right-hand side. Within the ansatz (20),(21), the
conserved quantities take the form:

N = π [|b|2 + (1 + |p|2)|a|2 + 2 Re(bpā)]e|p|2 (27)

J = π [|p|2|b|2 + (1 + 3|p|2 + |p|4)|a|2

+ 2(1 + |p|2) Re(bpā)]e|p|2 , (28)
Z = π [p̄(|b|2 + (2 + |p|2)|a|2 + p̄b̄a)

+ (1 + |p|2)āb] e|p|2 . (29)

Instead of H , it is convenient to use the quadratic conserved
quantity S = π |a|2 e|p|2 which is related to the Hamiltonian
by 8πH = 2N2 − S2. We note that |Z|2 = NJ − S2 but the
phase of Z is an independent conserved quantity, hence
the system (24)–(26) is minimally superintegrable. Among
the four conserved quantities, two triples {H,N,J } and
{H,N,Z} are in involution.

Using the above conservation laws and normalization N =
1, we rewrite the system (24)–(26) in the form

8πiṗ = Z̄ − p, (30)

8πiȧ = (Zp − J + 3)a, (31)

8πiḃ = Za + (Zp − J + 4)b. (32)

One first integrates (30) to get

p(τ ) = Z̄ + (p(0) − Z̄)eiωτ , ω = 1

8π
. (33)

If p(0) = Z̄, then p is time independent. This occurs for
initial conditions with a(0) = 0 or b(0) + a(0)p̄(0) = 0, which
correspond to the stationary solutions (18) with n = 0 or
n = 1, respectively. For initial data with Z = 0 we have
p(τ ) = p(0)eiωτ , while equations (31),(32) decouple and the
solution reads

a(τ ) = a(0)e−iλτ , b(τ ) = b(0)e−i(λ+ω)τ , (34)

where λ = (3 − J )/8π . All other solutions can be obtained
from this stationary solution [29] by magnetic translations [30]

p → p + q̄, a → ae−qp− 1
2 |q|2 , b → (b − qa)e−qp− 1

2 |q|2 ,
(35)

or directly solving (31),(32) upon substituting (33).
It follows from (31),(32) that the position of the vortex,

z0(τ ) = −b(τ )/a(τ ), satisfies the equation 8iπż0 = z0 − Z,
hence

z0(τ ) = Z + c e−iωτ , (36)
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FIG. 1. Snaphots of the condensate density |ψ(τ,z)|2 for our exact
analytic solution of the LLL equation in the rotating frame. The
physical time t corresponds to τ/g. The axis labeling is identical on
all the five snapshots and only given explicitly on the leftmost one.
The initial data used are a = 0.32, b = −0.22, p = 1.

which represents clockwise rotation with frequency ω along a
circle of radius |c| centered at Z.

We have explored stability of our solutions by perturbing
them away from the ansatz (20) and evolving with the LLL
equation numerically. The resulting motion tracks unperturbed
solutions, providing evidence for their stability.

We dwell for a moment on the physical features of the
motion our solutions describe. The condensate configurations
we consider contain exactly one vortex, given by the zero of
(20). In the critically rotating frame, to which (20) refers, the
vortex position performs slow clockwise circular motion (36)
with period ∼1/g. The peak of the condensate density, given
by the maximum of the Gaussian envelope in (20), is located
at p̄ (gt). Similarly to the vortex position, it performs a circular
motion given by (33), and the two circles are concentric (see
Fig. 1). We note that in the absence of nonlinearities (g = 0),
the lowest Landau level wave functions obviously do not
evolve at all in the critically rotating frame. It is important
to keep in mind that, while the precession period is large for
small g, any fixed number of precession periods falls within
the validity domain of our approximation, as specified in the
passage under (4).

The view in the laboratory frame is obtained by spinning our
solutions counterclockwise around the center of the trap with
angular velocity 1. In this frame, the vortex rotates around
the center of the trap along a circle whose radius is slowly
modulated on time scales of order 1/g according to (36); see
Fig. 2. In the special case (34) there is no modulation, only the
angular velocity of the vortex is shifted away from the critical
value to 1 − g/8π , and the motion looks similar to Fig. 1

FIG. 2. Trajectory of the vortex in the laboratory frame for the
same initial conditions as in Fig. 1 and coupling constant g = 1,
chosen for illustrative purposes. The radius of the orbit is slowly
modulated with the frequency gω ≈ 0.04. The in- and out-spiralling
phases are plotted in blue and green, respectively. The red circle
depicts the orbit in the rotating frame.

even if viewed from the laboratory frame. (This special case is
reminiscent of asymmetric vortex solutions at finite coupling
treated in Ref. [6].)

V. IMPLICATIONS

Vortex precession around the center of harmonic traps has
been discussed in the literature on BEC experiments [31,32],
and treated with approximate analytics and numerics [7–12], at
finite values of the coupling parameter g. The described vortex
motion is a combination of circular precession around the cen-
ter of the trap and jitter. This is consistent with the solutions we
have derived here, if one views the jitter at finite coupling as an
analog of our slow modulations at weak coupling. In analytic
treatments available in the literature, one employs approxi-
mations whose errors are not controllable, even if the results
qualitatively agree with experiments, such as the Thomas-
Fermi limit or matched asymptotic expansions. Our current
derivations, on the other hand, while specifically tuned to the
weakly nonlinear regime g � 1, are rigorous and precise. Vor-
tex precession rates observed in the experiments and numerics
are considerably below the critical angular velocity. Heuristic
arguments given in Ref. [8] suggest that the precession rate
should approach the critical rotation value as the coupling is
decreased, which is consistent with our present analysis.

It is beyond our immediate goals here to analyze the
prospects of experimental creation of the dynamical regime
we have described, though this possibility is very tantalizing.
We limit ourselves to highlighting a few obvious challenges.
First of all, it is essential to create trapped condensates with
very weak coupling. There appear to be systematic ways to
achieve this by utilizing Feshbach resonances [33].

Another challenge is to produce initial states consistent
with our wave-function ansatz. Single vortices are nucleated
in practice by spinning the trap with a certain frequency � and
letting the condensate settle to a new spinning ground state.
(The reason rotation matters is that realistic traps deviate from
perfect rotational symmetry. This is relevant for discussions
of vortex nucleation and production of initial states for our
dynamical regime. The dynamical regime described by our
ansatz, on the other hand, approximates the trap as perfectly
symmetric and treats its roughness as a negligible perturba-
tion.) For a sufficiently high �, the first vortex nucleates, while
still higher values of � lead to bigger arrays of vortices [5].
We also point out that our ansatz (20) is a spatial shift of
a linear combination of the free particle ground state and the
first excited state within the lowest Landau level. One may look
for protocols generating this state by a sudden shift of the trap.

Having explored the physical interpretation of our exact
LLL solutions, we briefly return to the relation with earlier
uses of the LLL approximation in the literature on rotating
Bose-Einstein condensates, including Refs. [1–5]. That work
was concerned with finding ground state wave functions,
which, in the regime in which the LLL approximation has
been used, displays patterns of many vertices. The restriction
to the lowest Landau level arises from the radial expansion
of the condensate, which decreases the effect of interactions
even for sizable values of the coupling constant g. In contrast,
our present results deal with a very different regime in which
only one vortex is present, but for which the LLL equation
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nevertheless provides a controlled approximation. In our set-
ting the control is not due to expansion of a condensate—rather,
the coupling is assumed to be perturbatively small to begin
with. The single-vortex configurations we describe should be
thought of as highly excited states from the point of view of
the Hamiltonian in the rotating frame, and, as discussed above,
their realization in a laboratory presents a new experimental
target. Extending our results to multivortex configurations is
an important theoretical goal for future work, and we will now
discuss reasons to be optimistic that it is within reach.

Our solutions have important connections to other recently
explored problems of mathematical physics. The LLL equation
(5) is identical in terms of algebraic structure to the Fourier
representation of the cubic Szegő equation [13] and the
conformal flow equation [16], only the coefficients differ.
Both of the latter equations admit three-dimensional invariant
manifolds parametrized in a form very similar to (21), and
the parallel with the conformal flow is particularly strong.
The dynamics of all these invariant manifolds is characterized
by periodic time dependence of the spectral localization
parameter |p|, while the dynamical returns for the LLL
equation are even stronger, with p itself being exactly periodic.

Our preliminary studies of stability point to some qualitative
differences between the LLL equation and its cousins, but it is
too early to judge how far these differences go. The abundance
of analytic results for the cubic Szegő equation, which is known
to be integrable, makes one hopeful that further exact solutions,
beyond the single-vortex regime treated here, can be obtained
for the LLL equation.
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