
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 194.94.224.254

This content was downloaded on 31/07/2017 at 17:55

Please note that terms and conditions apply.

Threshold for blowup for equivariant wave maps in higher dimensions

View the table of contents for this issue, or go to the journal homepage for more

2017 Nonlinearity 30 1513

(http://iopscience.iop.org/0951-7715/30/4/1513)

Home Search Collections Journals About Contact us My IOPscience

You may also be interested in:

Dispersion and collapse of wavemaps

Piotr Bizon, Tadeusz Chmaj and Zbislaw

  Tabor
Semilinear wave equations with a focusing nonlinearity

Piotr Bizo, Tadeusz Chmaj and Zbisaw Tabor

A proof for the mode stability of a self-similar wave map

O Costin, R Donninger and X Xia

Shrinkers, expanders, and the unique continuation beyond generic blowup in the heat flow

Pawe Biernat and Piotr Bizo

Formation of singularities for equivariant(2+1)-dimensional wave maps into the 2-sphere

Piotr Bizon, Tadeusz Chmaj and Zbislaw

Tabor
Equivariant wave maps exterior to a ball

Piotr Bizo, Tadeusz Chmaj and Maciej Maliborski

Diffusion, attraction and collapse

Michael P Brenner, Peter Constantin, Leo P Kadanoff et al.

Universality of global dynamics for the cubic wave equation

Piotr Bizo and Anl Zenginolu

Parabolic Monge--Ampere methods for blow-up problems

C J Budd and J F Williams

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0951-7715/30/4
http://iopscience.iop.org/0951-7715
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience
http://iopscience.iop.org/article/10.1088/0951-7715/13/4/323
http://iopscience.iop.org/article/10.1088/0951-7715/17/6/009
http://iopscience.iop.org/article/10.1088/0951-7715/29/8/2451
http://iopscience.iop.org/article/10.1088/0951-7715/24/8/005
http://iopscience.iop.org/article/10.1088/0951-7715/14/5/308
http://iopscience.iop.org/article/10.1088/0951-7715/25/5/1299
http://iopscience.iop.org/article/10.1088/0951-7715/12/4/320
http://iopscience.iop.org/article/10.1088/0951-7715/22/10/009
http://iopscience.iop.org/article/10.1088/0305-4470/39/19/S06


1513

Nonlinearity

Threshold for blowup for equivariant wave 
maps in higher dimensions

Paweł Biernat1, Piotr Bizoń2,3 and Maciej Maliborski3

1 Mathematisches Institut, Universität Bonn Germany
2 Institute of Physics, Jagiellonian University, Kraków, Poland
3 Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Golm, 
Germany

E-mail: pawel.biernat@gmail.com, bizon@th.if.uj.edu.pl  
and maciej.maliborski@aei.mpg.de

Received 27 August 2016, revised 24 January 2017
Accepted for publication 21 February 2017
Published 7 March 2017

Recommended by Professor Tamara Grava

Abstract
We consider equivariant wave maps from R +d 1 to Sd in supercritical 
dimensions ⩽ ⩽d3 6. Using mixed numerical and analytic methods, we show 
that the threshold of blowup is given by the codimension-one stable manifold 
of a self-similar solution with one instability. To probe self-similar blowup, 
we develop a novel numerical method, based on an adaptive rescaling of 
coordinates,  which may be of independent interest in numerical studies of 
singularity formation.
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(Some figures may appear in colour only in the online journal)

1. Introduction

This paper is concerned with the wave map equation

( )φ φ φ φ φ−∆ + | | −|∇ | = 0,tt t
2 2 (1)

where ( ) R R∈ ×t x, d and ( ) ↪S Rφ ∈ +t x, d d 1. We assume that ⩾d 3 and restrict attention to 
equivariant maps of the form (where =| |r x )

( ) ( ) ( )⎜ ⎟
⎛
⎝

⎞
⎠φ =t x

x

r
u t r u t r, sin , , cos , . (2)

For this ansatz equation (1) reduces to the scalar semilinear wave equation
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( )= +
−

−
−

u u
d

r
u

d

r
u

1 1

2
sin 2 .tt rr r 2 (3)

The goal is to understand global dynamics for smooth initial data ( )| =u u, t t 0. In [1] we found 
the explicit stable self-similar solution (8) and gave numerical and analytic evidence that for 
all ⩾d 3 this solution determines the universal asymptotics of generic blowup for large initial 
data (for d  =  3 this was established earlier in [2] and [3]). On the other hand, it is well known 
that solutions starting from small initial data remain globally regular in time (for an excel-
lent review of the Cauchy problem for wave maps, see [4]). The dichotomy between global 
regularity and blowup raises a natural question about the nature of a borderline between these 
two generic asymptotic behaviors. This question was first studied for d  =  3 in [2] which gave 
evidence that the threshold for blowup is determined by the codimension-one stable manifold 
of a self-similar solution with one instability (whose existence was established in [5]). In this 
paper we extend this analysis to dimensions ⩽ ⩽d4 6. In higher dimensions the threshold 
dynamics is qualitatively different and will be described elsewhere.

The outline of the paper is as follows. In section 2 we provide classification of self-sim-
ilar solutions of equation (25a) and in section 3 we analyze their linear stability. Finally, in  
section 4 we present results of numerical computations of dynamics at the threshold for blowup.

2. Self-similar solutions

By definition, self-similar solutions are invariant under the scaling, u(t/L, r/L)  =  u(t, r), hence 
they have the form

( ) ( )= =
−

u t r f y y
r

T t
, , , (4)

where a positive constant T, clearly allowed by the time translation symmetry, is introduced 
for later convenience. Inserting this ansatz into equation (25a) we obtain the ordinary differ-
ential equation

( ) ( )
⎛
⎝
⎜

⎞
⎠
⎟″− +

−
− −

−
=′y f

d

y
y f

d

y
f1

1
2

1

2
sin 2 0.2

2 (5)

We require solutions to be smooth on closed interval ⩽ ⩽y0 1, which corresponds to the solid 
past light cone of the point (t  =  T, r  =  0). For such solutions

( ) → ↗⎜ ⎟
⎛
⎝

⎞
⎠∂

−
=
−

∞
′

=
f

r

T t

f

T t
t T

0
as ,r

r 0
 (6)

hence each self-similar solution ( ) [ ]∈ ∞f y C 0, 1  is an example of a singularity developing in 
finite time from smooth initial data.

It follows from (5) that for local smooth solutions near the origin

( ) ( )O= +f y cy y ,3 (7)

where the parameter c determines the solution uniquely. It is not difficult to show that these 
local solutions can be extended smoothly to the whole interval ⩽ <y0 1 [5] but, in general, 
they are not smooth at y  =  1. The classification of self-similar solutions amounts to finding 
all (isolated) values of c for which the solution (7) is smooth at y  =  1. One such value is 

=
−

c
d0

2

2
 for which the solution is known is closed form [1] (for d  =  3 this solution was 

known earlier [6, 7])

P Biernat et alNonlinearity 30 (2017) 1513
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( )
⎛
⎝
⎜

⎞
⎠
⎟=

−
f y

y

d
2 arctan

2
.0 (8)

We conjecture that f0 is the only self-similar solution for ⩾d 7. To find other solutions in 
dimensions ⩽ ⩽d3 6, let us note that if f( y ) is smooth at y  =  1, then [8]

( ) ( ) ( ( ))− −
−

=′d f
d

f3 1
1

2
sin 2 1 0, (9a)

( ) ( ) ( ( ) ( ( ))) ( )″− + − − − =′d f d d f f5 1 7 1 cos 2 1 1 0, (9b)

where (9a) follows directly from (5) and (9a) follows from multiplying (5) by y2 and differ-
entiating. As a consequence, smooth solutions have the following Taylor series expansions at 
y  =  1:

 • For d  =  3 we have

( ) ( )( )π
= − − +′f y f y

2
1 1 .... (10)

  where ( )′f 1  is the only free parameter.
 • For d  =  5 there are two possibilities. Either

( ) ( )( )″
π

= + − +f y f y
2

1

2
1 1 ...2 (11)

  or

( ) ( ) ( )( )″
π

= − − + − +f y y f y
3

3

2
1

1

2
1 1 ....2 (12)

  In both cases ( )″f 1  is the only free parameter.
 • For d  =  4, 6 we have

( ) ( )
( )

( ( ))( )= −
−
−

− +f y f
d

d
f y1

1

2 3
sin 2 1 1 ... (13)

  where ( ) /π≠f 1 2 is the only free parameter.

Theorem. For each { }∈d 3, 4, 5, 6  there is an infinite sequence ( ) N∈cn n  such that the  
solution (7) is smooth at y  =  1 and behaves as (10) for d  =  3, as (11) for d  =  5, and as (13) 
for d  =  4, 6. We denote the corresponding solutions by fn( y ).

For d  =  3, 5 this theorem was proven in [5] using a shooting argument. Key to this argu-
ment is the change of an independent variable which brings equation (5) into an asymptoti-
cally autonomous form that can be analyzed by dynamical system methods. For d  =  4, 6 the 
proof requires a minor modification that we leave to the interested reader as an exercise. For 
d  =  5 an alternative variational proof of existence of f1( y ) was given in [8].

The index n on fn is the nodal index. From the construction of self-similar solutions given 
in [5] it follows that

( )
( )

⎧
⎨
⎩

=
=

+ =
n

N n d d
N n d d

, for 3, 4,
, 1 for 5, 6,

 (14)

where N(n, d) be the number of zeros of ( )′f yn  on (0, 1).

P Biernat et alNonlinearity 30 (2017) 1513
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3. Linear stability analysis

As the first step towards understanding the role of the self-similar solutions ( )
−

fn
r

T t
 in dynam-

ics we need to analyze their linear stability. To this end it is convenient to define a new time 
coordinate ( )= − −s T tln  and rewrite equation (25a) in terms of U(s, y)  =  u(t, r)

( ) ( )
⎛
⎝
⎜

⎞
⎠
⎟+ + = − +

−
− −

−
U U y U y U

d

y
y U

d

y
U2 1

1
2

1

2
sin 2 .ss s sy yy y

2
2 (15)

In these variables the problem of finite time self-similar blowup is converted into the prob-
lem of asymptotic convergence for →∞s  towards a stationary solution f( y ). Following the 
standard procedure we seek solutions of equation (15) in the form ( ) ( ) ( )= + λU s y f y v y, en

s . 
Dropping nonlinear terms we get the quadratic eigenvalue problem on the interval ⩽ ⩽y0 1

( ) ( ) ( ) ( )
⎛
⎝
⎜

⎞
⎠
⎟″ λ λ λ− +

−
− + − + −

−
=′y v

d

y
y v v

d

y
f v1

1
2 1 1

1
cos 2 0.n

2
2

 

(16)

By assumption, the solution U(s, y) is smooth for <∞s , hence it is natural to demand that 
[ ]∈ ∞v C 0, 1 . This condition leads to the quantization of the eigenvalues. The Frobenius indi-

ces for v( y ) are {1, 1−d} at y  =  0 and { }λ−−0, d 1

2
 at y  =  1, where the first index in each 

pair gives the smooth solution.
The linear stability analysis of the solution f0 in [1, 9] took advantage of the fact that in this 

case equation (16) can be expressed as the Heun equation. Unfortunately, other self-similar 
solutions are not known in closed form so this approach is not possible.

Let us denote the eigenvalues and eigenfunctions for fn by ( )λk
n  and ( )( )v yk

n . We conjecture 
that for each n the eigenvalues are real and can be ordered as follows

( ) ( ) ( ) ( ) ( )�� ������� ������� � ���� ���� �� ������� �������λ λ λ λ λ< < < < = < < <− −

∞

0 1 .n n n n
n
n

n

2 1

many stable modes

0

gauge mode

1

unstable modes
 (17)

The eigenvalue ( )λ n
0  corresponds to the gauge mode ( ) ( )( ) = ′v y y f yn

n0  generated by the shift of 
the blowup time T. In the following we corroborate (17) by analytic and numerical arguments.

It is instructive to consider a self-adjoint eigenvalue problem associated with (16). Let

( ) ( ) ( )/= − λ −
w y y y v y1 .

d2 2 1
2 (18)

Then, equation (16) becomes

( )( ) ( ) ( )µ= = − − ∂ − ∂ +
+ −

A w w A y y V y, 1 1 ,n n
d

y
d

y n
2

1
2 2 3

2 (19)

where

( )µ λ λ= − −d 1 (20)

and

( ) ( ) ( ( )) ( ) ( )⎜ ⎟
⎛
⎝

⎞
⎠=

−
− +

−
+V y

d

y
y f y

d
y

1
1 cos 2

3

4
1 .n n2

2 2
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The operator An is essentially self-adjoint on the Hilbert space ([ ] ( ) )= − − +
X L y y0, 1 , 1 d2 2 d 1

2 . 
We shall refer to the eigenvalues of An as μ-eigenvalues, not to be confused with the eigenval-
ues λ of our problem.

The Frobenius indices for w( y ) are ( )± d11

2
 at y  =  0 and ( ( ) )µ− ± − −d d1 1 41

4
2  at 

y  =  1, where the  +  indices give solutions belonging to X (for ( )µ< −d 11

4
, the bottom of the 

continuous spectrum). For λ> −d 1

2
 we have

( )( ) ( )µ λ
λ

− + − − = − +| − − | =d d d d
1

4
1 1 4

1

4
1 1 2

2
,2

hence the ‘good’ Frobenius solutions for w( y ) correspond via (18) to the ‘good’ Frobenius 
solutions for v( y ). This implies by (20) that for each μ-eigenvalue there is a corresponding 
eigenvalue

( ( ) )λ µ= − + − −d d
1

2
1 1 4 .2 (21)

This correspondence can be used to get a lower bound on the number of positive eigenvalues. 
To this end, consider the function

( ) ( ) ( ) ( ) ( )( ) / ( ) /= − = − ′
− +

w y y y v y y y f y1 1 .n d n d

n0
2 1 2 1

2 0
2 1 2

1
2 (22)

This function solves equation  (19) for µ = −d 2, hence by the Sturm oscillation theo-
rem the number of μ-eigenvalues below (d  −  2) is equal to the number of zeros of ( )′f yn  
which, from (14), is n (for d  =  3, 4) or n  −  1 (for d  =  5, 6). Using the correspondence (21) 
between μ-eigenvalues and the eigenvalues λ, we infer that fn( y ) has exactly n (for d  =  3, 4)  
or n  −  1 (for d  =  5, 6) eigenvalues λ> −d 2. In addition, for d  =  5 and ≠n 0 the function 

( ) ( ) ( )( ) = − ′−v y y y f y1n
n1

2 1 , which by (18) corresponds to ( )( )w yn
0  for λ = − =d 2 3, is smooth 

at y  =  1 as follows from (11), hence ( )λ = 3n
1  is the eigenvalue for each ≠n 0 in d  =  5.

The numerical computations of eigenvalues indicate that, apart from the eigenvalues 
⩾λ −d 2 discussed above, in dimensions d  =  3, 4, 5 there are no additional eigenvalues with 

positive real part, while for d  =  6 there is exactly one additional positive real eigenvalue ( )λ n
1 . 

Moreover, for each fn there are infinitely many negative real eigenvalues (note that the eigen-

values with ( )λ < −Re d 1

2
 a priori need not be real). It appears there are no other eigenvalues, 

confirming the spectrum (17). In the most relevant case here, n  =  1, the numerically computed 
eigenvalues are displayed in table 1.

An important consequence of the above considerations is the existence of a unique self-
similar solution f1( y ) with exactly one unstable mode. This solution is an expected candidate 
for the critical solution which leads us to:

Table 1. The six largest eigenvalues of linear modes about f1.

d λ1
1( ) λ0

1( ) λ−1
1( ) λ−2

1( ) λ−3
1( ) λ−4

1( )

3 6.333 63 1 −0.518 61 −1.752 03 −2.888 73 −3.976 44
4 3.998 83 1 −0.390 21 −1.585 42 −2.714 68 −3.816 26
5 3 1 −0.281 77 −1.447 55 −2.573 72 −3.683 16
6 2.426 24 1 −0.179 96 −1.308 48 −2.419 83 −3.523 85

P Biernat et alNonlinearity 30 (2017) 1513
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Conjecture. For { }∈d 3, 4, 5, 6  the threshold of blowup is given by the codimension-one 
stable manifold of the self-similar solution f1.

In the next section we present the numerical corroboration of this conjucture.

4. Threshold for blowup

Before discussing evolution, we show in figure 1 and table 2 the numerically computed pro-
files and parameters of the self-similar solution f1 in ⩽ ⩽d3 6.

Numerical simulations of blowup require special methods that are able to resolve vanishing 
spatio-temporal scales as the solution develops a singularity. In our previous study of generic 
blowup for equation (25a) we used a moving mesh method [1]. This method is computation-
ally costly which is a serious drawback in the present context because the precise fine-tuning 
to the threshold requires many runs of the code. For this reason we propose here a different 
method which is based on specially designed similarity-like coordinates for which self-similar 
solutions are asymptotic stationary states. We believe that our method is interesting on its 
own and could be useful in numerical simulations of self-similar blowup for other evolution 
equations.

Note that standard similarity coordinates (s, y) are not suitable for numerical evolution 
because the time of blowup is not known a priori which leads to the the gauge mode instabil-
ity, as described above. To go around this difficulty we shall use a self-correcting coordinate 
system that adapts to the upcoming blow-up time as the solution evolves. This new coordinate 
system ( )τ ρ,  is defined as follows

( ) ( )ρ τ
τ

τ= = =τ τ− −r t t
t

he , ,
d

d
e , (23)

where the function ( )τh , defining the relation between the numerical slow-time τ and t, will be 
chosen below (for h  =  1 the coordinates ( )τ ρ,  coincide with the similarity coordinates (s, y)). 
The new dependent variables (V, P) are defined as follows

0 0.25 0.5 0.75 1

Figure 1. Profiles of f1 in d  =  3, 4, 5, 6.

Table 2. Shooting parameters of f1 in d  =  3, 4, 5, 6.

d ′f 01( ) f1(1) ′f 11( )

3 21.757 41 π 2/ −0.305 66
4 10.995 3 1.606 34 −0.106 54
5 7.821 19 π 2/ 0
6 6.715 08 1.535 34 0.059 052

P Biernat et alNonlinearity 30 (2017) 1513
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( ) ( ) ( ) ( )τ ρ τ ρ= ∂ = τu t r V u t r P, , , , e , .t (24)

In terms of these new variables the wave map equation takes the form

ρ∂ = − ∂τ ρV hP V , (25a)

( )
⎛
⎝
⎜

⎞
⎠
⎟

ρ ρ
ρ∂ = ∂ +

−
∂ −

−
− − ∂τ ρρ ρ ρP h V

d
V

d
V P P

1 1

2
sin 2 .

2 (25b)

Differentiating (25a) with respect to ρ and evaluating at ρ = 0 we get

( ( )) ( ) ( ) ( )τ τ τ τ∂ ∂ + ∂ = ∂τ ρ ρ ρV V h P, 0 , 0 , 0 . (26)

Choosing

( ) ( ( ))τ τ= ∂ρ −h P , 0 1 (27)

and solving (26) we obtain

( )τ∂ = +ρ
τ−V c, 0 1 e . (28)

Thus, regardless of whether the solution blows up or not, its gradient ( )τ∂ρV , 0  tends asymp-
totically to 1. The gradient ( )τ∂ρP 0,  also remains bounded but its asymptotic value depends 
on an endstate of evolution. To see this, note that

( ) ( )τ∂ = ∂τ ρu t P, 0 e , 0 ,rt
2 (29)

which implies that in the case of dispersion we have ( ) →τ∂ρP 0, 0 (hence ( ) →τ ∞h ), while 
in the case of blowup along the self-similar solution fn we have ( ) → / ( )τ∂ ′ρP f0, 1 0n  (hence 
( ) → ( )τ ′h f 0n ).

The boundedness of the gradient of any solution is a very desirable feature of our form-
ulation since it allows us to solve the system (25), with h given by (27), using standard finite 
difference methods on a uniform grid. More specifically, we use a fourth order centered finite 
difference scheme to approximate spatial derivatives in the interior of the numerical grid 
ρ ρ< <0 max. Near the origin ρ = 0 we use symmetries of functions V and P to evaluate deriv-

ative stencils, while near the artificial boundary ρmax we use one-sided schemes. We evolve 
this semi-discrete system in time with fifth order adaptive Runge–Kutta method, known as 
DOPRI5 [10]. To suppress spurious high frequencies we add standard dissipation terms. As 

an outer boundary of the radial grid we typically take ( )ρ ≈ ′f2 0nmax , where ( )−
fn

r

T t
 is the 

expected self-similar endstate of evolution. This guarantees that the grid includes the past light 
cone of the singularity.

Remark. Our numerical method can be viewed as a simplified moving mesh method com-
bined with a Sundman transformation. In a moving mesh method each mesh point can move 
independently from other points (the motion of mesh points is governed by a prescribed mesh 
density function). In our case, the mesh points form a more rigid structure as reflected by a 
simple relation between r and ρ. The relative scale of r and ρ is governed only by a single de-
gree of freedom ( )τh . The same parameter also dictates the relative scales of the time variables 
t and τ just as a Sundman transformation would.

We illustrate our numerical results for initial data of the form

( ) ( )ρ
ρ
ρ

ρ= =V
A

P0,
cosh

0, . (30)

P Biernat et alNonlinearity 30 (2017) 1513



1520

For large A we find that ( ) → ( )τ ′h f 00  (which corresponds to generic blowup governed by 
the self-similar solution f0), while for small A we find that ( ) →τ ∞h  (which corresponds to 
dispersion to zero). Using bisection we fine tune the amplitude A to the critical value A* with 
precision of 32 digits. For such marginally critical amplitudes we observe that for intermediate 
times ( )τh  approaches ( )′f 01 . This is illustrated in figure 2 which shows the marginally sub- 
and supercritical evolutions in d  =  6 (the plots for d  =  3, 4, 5 look very similar).

To compare the results with the predictions of the linear perturbation analysis from  
section  3, we now translate the results into the similarity coordinates (s, y). To this end 

we need to determine the blowup time T. This is done as follows. First, we integrate  

equation  ( )τ=
τ

τ− hetd

d
 to get ( )τt . For intermediate times ( )τt  develops a plateau which yields 

a rough estimate for T. Having that, we compute e−s  =  T  −  t and then

( ) ( )τ∂ ≈ ∂τ
ρ

−U s V, 0 e , 0 .y
s (31)

From the linear perturbation analysis it follows that for intermediate times (when the solution 
is close to the threshold) the left hand side of (31) is well approximated by

( ) ( ) ( ) ( )
∂ ≈ + + +′ λ λ

− −U s f a a e a, 0 0 e e ,y
s s s

1 1 0 11
1

1
1

 (32)

where the coefficient ∼ − ∗a A A1  is very small.

0 0.5 1 1.5 2

Figure 2. The evolution of a pair of initial data (30) in d  =  6 with marginally sub- (blue 
line) and supercritical (red line) amplitudes ε= ±∗A A , where ε is of the order 10−32. 
The solutions evolve together, approach the intermediate attractor f1 (dashed line), and 
eventually depart from it in opposite directions.

P Biernat et alNonlinearity 30 (2017) 1513
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Since our estimate of the blowup time is not precise, this approximation involves the gauge 
mode instability with a nonzero coefficient a0(T). Fitting the formula (32) to the right hand 
side of (31), we get the coefficients a1, a0, and a−1, which depend on the estimated value of T. 
Finally, performing bisection with respect to T we determine the precise blowup time T* for 
which ( ) =∗a T 00 .

The result of such a fit for the marginally critical evolution from figure 2 is shown in figure 3 
(to plot both the sub- and supercritical solutions against the same variable ( )= − −s T tlog , 
the blow-up time T was chosen to be the average of T* for the sub- and supercritical solutions). 
The fit shows excellent agreement with the results of the linear perturbation analysis which 
makes us feel confident that our conjecture is true.
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