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Abstract
We prove that the focusing cubic wave equation in three spatial dimensions
has a countable family of self-similar solutions which are smooth inside the
past light cone of the singularity. These solutions are labelled by an integer
index n which counts the number of oscillations of the solution. The linearized
operator around the nth solution is shown to have n + 1 negative eigenvalues
(one of which corresponds to the gauge mode) which implies that all n > 0
solutions are unstable. It is also shown that all n > 0 solutions have a singularity
outside the past light cone which casts doubt on whether these solutions may
participate in the Cauchy evolution, even for non-generic initial data.

PACS numbers: 35L70, 34B15

1. Introduction

This paper is a continuation of our studies of semilinear wave equations in three spatial
dimensions with a focusing power nonlinearity

∂ttu − �u − up = 0, p = odd integer � 3. (1)

In [1] we showed that for each odd integer p � 7 equation (1) has a countable sequence
of regular self-similar solutions while for p = 5 there is no non-trivial regular self-similar
solution. This result has important consequences for the character of the threshold of blowup
for equation (1) [2].

Here we consider the subcritical power p = 3 and, as before, restrict our attention to
spherically symmetric solutions, so u = u(t, r) and equation (1) reduces to

∂ttu − ∂rru − 2

r
∂ru − u3 = 0. (2)
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This equation has the scaling symmetry (for each positive constant λ)

u(t, r) → uλ(t, r) = λ−1u(t/λ, r/λ), (3)

so it is natural to ask whether there are solutions which are invariant (modulo time translation)
under this scaling. Such solutions are called self-similar. It follows from (3) and the symmetry
under time translation that self-similar solutions must have the form

u(t, r) = (T − t)−1U(ρ), (4)

where T is a positive constant (usually referred to as the blowup time) and ρ = r/(T − t) is
the so-called similarity variable ranging from zero to infinity. By definition, the self-similar
solutions are singular at the point (T , 0).

Substituting the ansatz (4) into equation (2) we get the ordinary differential equation

(1 − ρ2)
d2U

dρ2
+

(
2

ρ
− 4ρ

)
dU

dρ
− 2U + U 3 = 0. (5)

The obvious constant solution of this equation is U0(ρ) = √
2 and the question is whether there

are other non-trivial solutions U(ρ) which are smooth in the interval 0 � ρ � 1 (i.e., inside
the past light cone of the point (T , 0)). Numerical evidence for the existence of a countable
family of such solutions was given in [2] and the main goal of this paper is to prove this fact
rigorously. As in [1], we will present two different proofs of this result. The first proof, given
in sections 2 and 3, is rather explicit and exploits the conformal invariance of the cubic wave
equation in an essential way. The second proof, given in the appendix, is more general in
the sense that it is based on ‘soft’ topological arguments. We note that a general variational
argument for the existence of infinitely many weak solutions of equation (5) was given before
in [3], while non-existence of solutions with finite energy was shown by Kavian and Weissler
in [4] (cf also constructions of self-similar solutions by solving the initial value problem for
homogeneous initial data [5–7]).

Having established the existence of self-similar solutions in section 3, we analyse some
of their properties in the second part of the paper. In section 4 we derive some remarkable
asymptotic scaling formulae for the solutions with many oscillations. Section 5 is devoted to
the linear stability analysis. Finally, in section 6 we show that all non-constant solutions have
a singularity outside the past light cone. We point out that for the sake of clarity of exposition
the paper is written in the ‘physics’ style; however, its conversion to the ‘epsilon-delta’ style
is routine and we leave it to the mathematically oriented reader.

2. Dynamical system and local existence

In the studies of self-similar solutions it is convenient to use hyperbolic polar coordinates (s, x)

defined by

T − t = e−s cosh(x), r = e−s sinh(x). (6)

The transformation (6) is a conformal transformation of the Minkowski spacetime. In the
hyperbolic coordinates the Minkowski metric reads as

ds2 = e−2s
(−ds2 + dx2 + sinh2(x) d�2

)
, (7)

where −∞ < s < ∞, x � 0 and d�2 is the round metric on the unit two-sphere. The surfaces
s = const are hyperboloids H 3 with constant scalar curvature −1 which foliate the interior of
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the past light cone of the point (T , 0). Due to the conformal symmetry of equation (2), the
function f (s, x) = ru(t, r) satisfies a simple wave equation

∂ssf − ∂xxf − f 3

sinh2(x)
= 0. (8)

The self-similar solutions of equation (2) correspond to static solutions of equation (8), i.e.
solutions f (x) which satisfy the ordinary differential equation (here and in the following we
denote the derivative by the prime)

f ′′ +
f 3

sinh2(x)
= 0 (9)

on the half-line x � 0. In particular, the constant solution U0(ρ) = √
2 of equation (5)

corresponds to f0(x) = √
2 tanh(x). The rest of this section and sections 3 and 4 are devoted

to the analysis of solutions of equation (9).
In order to obtain a dynamical system formulation we introduce

b(x) = f (x) − xf ′(x), d(x) = f ′(x). (10)

Then, equation (9) is equivalent to the system of first order equations

b′ = xf 3

sinh2(x)
, d ′ = − f 3

sinh2(x)
, (11)

where f (x) = b(x) + xd(x). Rewriting this system in the form

x

(
b

x

)′
= −b

x
+

x4

sinh2(x)

(
b

x
+ d

)3

, xd ′ = x4

sinh2(x)

(
b

x
+ d

)3

, (12)

and applying proposition 1 of [8], we infer that there exists a one-parameter family (b/x, d)(x)

of local solutions of equations (12) with boundary condition (b/x, d)(0) = (0, c), analytic
in (x2, c) and defined for all c and |x| < ξ(c) with some ξ(c) > 0. We shall refer to these
solutions as ‘c-orbits’ and denote them by b(c, x) and d(c, x). It follows from the above that
the c-orbits have the following expansion near the origin:

b(c, x) = 1
3c3x3 + O(x5), d(c, x) = c − 1

2c3x2 + O(x4). (13)

3. Global existence

In this section we prove our main result:

Theorem 1. There exists a countable family of smooth solutions fn of equation (9) satisfying
the boundary conditions (13) at x = 0 and (15) for x → ∞. The index n = 0, 1, 2, . . .

denotes the number of zeros of fn(x).

To prove this theorem let us consider the global behaviour of c-orbits. Without loss of
generality we may assume that c � 0. First, we observe that c-orbits are defined for all x � 0,
as follows immediately from the existence of the Lyapunov function

G = 2d2 +
f 4

sinh2(x)
, G′ = −2 coth(x)

f 4

sinh2(x)
� 0. (14)

Second, c-orbits have simple asymptotic behaviour since by (14) f/
√

sinh(x) is bounded when
x → ∞, hence the right-hand sides of equations (11) are integrable, and therefore b(x) and
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Figure 1. d̄(c) = D/σ versus b̄(c) = (B + 8D)/σ where σ = ((B + 8D)2 + D2)1/6 for positive
(solid) and negative (dashed) values of c.

Table 1. The parameters of the first few solutions fn generated numerically and their comparison
with the asymptotic formulae (43) and (44).

n cn bn E(fn) cn (theory) bn (theory)

0
√

2
√

2 1/3 1.630 626 1.467 029
1 9.616 283 −3.578 348 4.628 10 9.991 135 −3.631 358
2 30.139 27 6.315 947 21.542 9 30.681 145 6.363 520
3 68.582 42 −9.519 976 64.805 3 69.292 246 −9.563 216
4 130.537 9 13.130 18 153.071 131.416 03 13.170 001
5 221.596 7 −17.105 16 309.116 222.644 08 −17.142 226
6 347.327 7 21.414 18 556.682 348.567 98 21.448 919

d(x) have finite limits B and D for x → ∞. Moreover, the rapid decrease of the right-hand
sides of equations (11) implies that the limits B(c) and D(c) are continuous functions of c.

It follows from the above that f (c, x) ∼ B(c) + D(c)x for x → ∞, hence solutions of
equation (9) corresponding to c-orbits are regular at infinity if and only if D(c) = 0. Now,
we will show that there is an infinite sequence cn with n = 0, 1, 2, . . . such that D(cn) = 0.
The corresponding globally regular solutions are characterized by bn = B(cn) and behave
asymptotically as

f (x) = bn − b3
ne−2x + O(e−4x). (15)

Numerically one finds a sequence of such solutions (see figure 1) with n = 0, 1, 2, . . . zeros
and parameters b2

n ∼ cn ∼ (n + 1)3 (see table 1 and section 4). Note that for the globally
regular solutions the conserved energy functional associated with equation (8),

E(f ) = 1

2

∫ ∞

0

(
f 2

s + f 2
x − f 4

2 sinh2(x)

)
dx, (16)

is finite and, as indicated by numerics, monotonically increasing with n (see table 1).
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Let us introduce the phase function

φ(x) = arctan

(
b(x)

d(x)

)
, with φ′ = f 4

sinh2(x)(b2 + d2)
� 0. (17)

For c-orbits we normalize φ(c, x) by the condition φ(c, 0) = 0. Then φ(c, x) = (i −1/2)π at
the ith extremum of f (c, x). Furthermore, the limit 
(c) = φ(c, ∞) is a continuous function
of c and 
(cn) = (n + 1/2)π for a regular solution fn(x) with n zeros.

Integrating equations (11) for c ≈ 0 yields

φ(c, x) = c2
∫ x

0

ξ 4 dξ

sinh2(ξ)
+ O(c4), 
(c) = c2 π4

30
+ O(c4). (18)

To find the behaviour of the phase function for large c we rescale the variables

F(y) = f (x), y = cx, (19)

so that equation (9) becomes

F ′′ +
F 3

c2 sinh2(y/c)
= 0. (20)

For c → ∞ we get the limiting equation

F ′′ +
F 3

y2
= 0, F (y) = y − 1

6
y3 + O(y5), (21)

whose solution is oscillatory. In terms of the original variables this implies that
limc→∞ φ(c, x) = ∞ for any finite x > 0, and hence limc→∞ 
(c) = ∞. Therefore, for
each n � 0 there exists at least one4 value cn such that 
(cn) = (n + 1/2)π . This concludes
the proof of existence of a countable family of regular self-similar solutions of the cubic wave
equation.

4. Asymptotic formula for bn and cn

In this section, we use the technique of matched asymptotic expansions to derive the asymptotic
scaling formulae for the parameters of solutions fn(x) in the large n limit. The solutions with
many zeros are approximately periodic with a modulated amplitude. In order to extract the
periodic part we factorize f in the form

f (x) = a(x)v(t (x)), (22)

with suitable functions a(x) and t (x). Plugging this ansatz into equation (9) we get (denoting
t-derivatives by a dot)

at ′2v̈ + (at ′′ + 2a′t ′)v̇ + a′′v +
a3v3

sinh2(x)
= 0, (23)

and impose the conditions

sinh(x)t ′ = a, (24)

2a′t ′ + at ′′ = 0. (25)

Differentiating the first equation we get

a′

a
= t ′′

t ′
+ coth(x), (26)

4 Numerics indicate that for each n there is exactly one cn.
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which we use to eliminate a from the second one. Thus we obtain
t ′′

t ′
= −2

3
coth(x), (27)

and by integration (suppressing an irrelevant integration constant)

t ′ = sinh−2/3(x), (28)

and finally

t (x) =
∫ x

0

dξ

sinh2/3(ξ)
. (29)

The length T of the t interval corresponding to 0 � x < ∞ is

T =
∫ ∞

0

dξ

sinh2/3(ξ)
= 1

2
B

(
1

6
,

1

3

)
≈ 4.206 546 32. (30)

From equation (24) we get

a(x) = sinh1/3(x). (31)

Using the expressions for a(x) and t (x) in equation (23) yields

v̈ + v3 + hv = 0, (32)

with

h(x) = 3 sinh2(x) − 2 cosh2(x)

9 sinh2/3(x)
. (33)

The behaviour of t (x) for x → 0 is t (x) → 3x1/3, implying h → −2/t2 for x → 0.
Introducing t̄ = T −t we find t̄ (x) → 3

2 cosh−2/3(x) for x → ∞ and consequently h → 1/4t̄2.
The linear term hv can be neglected except near t = 0 respectively t̄ = 0, where it dominates
the cubic term. From the boundary conditions for f (x) one obtains v(t) → c

9 t2 for t → 0

respectively v(t̄) →
√

2
3bt̄1/2 for t̄ → 0.

In order to extract the leading behaviour for large b respectively c, we rescale t → t/c1/3

respectively t̄ → t̄/b2/3. Furthermore we rescale v by v → c1/3v respectively v → b2/3v. In
the limit b, c → ∞, neglecting non-leading terms in h we obtain the equations

v̈ + v3 − 2

t2
v = 0 , (34)

respectively

v̈ + v3 +
1

4t̄2
v = 0, (35)

for the rescaled variables. The rescaled boundary conditions are v(t) → 1
9 t2 for t → 0

respectively v(t̄) →
√

2
3 t̄1/2 for t̄ → 0. Numerically one finds that the solutions of

equations (34) and (35) with these boundary conditions converge very quickly to solutions of

v̈ + v3 = 0, (36)

with amplitudes A0 respectively A1. Numerically one finds A0 ≈ 0.902 478 51 and A1 ≈
0.822 739 65. After rescaling v(t) → v(t/A)/A both solutions tend to the solution F1(t) of
equation (36) with the normalized amplitude and the corresponding period

τ = 4
√

2
∫ 1

0

dz

(1 − z4)1/2
=

√
2B

(
1

4
,

1

2

)
≈ 7.416 298 71. (37)
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We fix the phase of F1 such that F1(0) = 0. Then the rescaled vs tend to F1 with some phase
shifts θ0 respetively θ1, i.e.

v(t/A)/A → F1(t + θ) for t → ∞. (38)

Numerically one finds θ0 ≈ −1.622 553 3 and θ1 ≈ 0.862 351 2. After shifting the two
solutions with their respective θs they coincide asymptotically.

Supposing we have a regular solution fn(x) with n � 1 zeros, the parameters bn and cn

must have been chosen so that the corresponding solutions of equation (32) starting at either end
of the interval 0 � x < ∞ match at some intermediate point. Using the discussed asymptotics
of the rescaled solutions we obtain two conditions matching amplitudes and phases. Matching
the amplitudes we get

c1/3
n A0 = b2/3

n A1. (39)

To match the phases we assume that we match a solution starting at x = 0 with m zeros with
one from x = ∞ with n − m + 1 at their last zero. The corresponding t intervals t0 and t̄1
must add up to the total t interval T . Taking into account the rescalings and the phase shifts
we obtain the condition

c
−1/3
n

A0

(
m

τ

2
− θ0

)
+

b
−2/3
n

A1

(
(n − m + 1)

τ

2
− θ1

)
= T . (40)

Making use of equation (39) this can be rewritten as

(n + 1) τ
2 − (θ0 + θ1)

c
1/3
n A0

= T , (41)

which is independent of m and hence from the matching point as required for consistency.
Thus we obtain the desired asymptotic formula for n � 1

cn =
(

(n + 1) τ
2 − (θ0 + θ1)

A0T

)3

. (42)

Putting in numbers we get

cn ≈
(

3.708 149 35 (n + 1) + 0.760 202 2

3.796 317 7

)3

, (43)

together with

b2
n =

(
A0

A1

)3

cn ≈ 1.319 846 2 cn. (44)

5. Linear stability analysis

The role of self-similar solutions in the Cauchy evolution depends crucially on their stability
under small perturbations. To analyse this issue, in this section we determine the spectrum
of the linearized operator around the self-similar solutions fn(x). Substituting the ansatz
f (s, x) = fn(x)+w(s, x) into equation (8) and linearizing, we obtain the linear wave equation
with a potential

∂ssw − ∂xxw + Vn(x)w = 0, Vn(x) = − 3f 2
n

sinh2(x)
. (45)

Since fn(x) ∼ cnx for x → 0 and fn(∞) = bn, the potential Vn(x) is everywhere bounded
and decays exponentially at infinity.



232 P Bizoń et al

Separating time, w(s, x) = eiksξ(x), we get the eigenvalue problem

Lnξ = k2ξ, Ln = − d2

dx2
+ Vn(x). (46)

For each n, the operator Ln is self-adjoint on D(Ln) = {ξ ∈ L2[0, ∞), ξ(0) = 0} and has a
continuous spectrum k2 � 0. The discrete spectrum depends on n. More precisely, we claim
that Ln has exactly n + 1 negative eigenvalues. To see this, note that equation (8) is invariant
under the following transformation:

s → s +
1

2
ln

(
1 + 2α cosh(x)es + α2e2s

)
, x → tanh−1

(
sinh(x)

cosh(x) + αes

)
, (47)

which is nothing else but the time translation t → t + α, expressed in hyperbolic coordinates.
Hence, each time-independent solution f (x) gives rise to the one-parameter family of time-
dependent solutions

fα(s, x) = f

(
tanh−1

(
sinh(x)

cosh(x) + αes

))
. (48)

The perturbation δf generated by this symmetry (which we shall refer to as the gauge mode)
is tangent to the orbit (48) at α = 0, that is

δf = ∂fα(s, x)

∂α
|α=0 = sinh(x)f ′(x) es . (49)

Thus, for each n the operator Ln has the eigenvalue k2 = −1 associated with the eigenfunction
ξ (n)(x) = sinh(x)f ′

n(x). Since by construction the solution fn(x) has n oscillations, it follows
that the eigenfunction ξ (n)(x) has n nodes, which in turn implies by the Sturm oscillation
theorem that there are exactly n eigenvalues below k2 = −1. This means that the solution
fn(x) has at least n unstable modes (the gauge mode does not count as a genuine instability).
Numerics indicate that there are no eigenvalues in the interval −1 < k2 < 0, so we claim that
the above phrase ‘at least n’ can be replaced by ‘exactly n’; however, we can prove this claim
only for the perturbations of the ground state solution f0(x) = √

2 tanh(x). In this case

V0(x) = − 6

cosh2(x)
(50)

is the Pöschl–Teller potential for which the whole spectrum is known explicitly. In particular,
the gauge mode ξ (0)(x) = sinh(x)/ cosh2(x) is the only eigenfunction.

6. Behaviour of solutions outside the light cone

The hyperbolic coordinates (6) cover only the interior of the past light cone, hence in order
to see what happens outside the light cone we need to return to the similarity variable ρ and
equation (5). The results of section 3 imply that equation (5) has infinitely many solutions
which are smooth on the closed interval 0 � ρ � 1 and behave as

U(ρ) = c +
c

6
(2 − c2)ρ2 + O(ρ4) for ρ → 0, (51)

and

U(ρ) = b +
b

2
(b2 − 2)(ρ − 1) + O((ρ − 1)2) for ρ → 1. (52)

We will refer to solutions satisfying the boundary condition (52) as to ‘b-orbits’. Without loss
of generality we assume that b � 0. Now, we will show that there are no b-orbits which are
smooth for all ρ � 0. The proof consists of two steps. In the first step we show that all b-orbits
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with 0 < b <
√

2 become singular at ρ = 0. This will imply that the smooth solutions
constructed in section 3 must have bn >

√
2 for all n � 1. In the second step we show that all

b-orbits with b >
√

2 become singular at some ρ > 1.

Step 1. Consider a b-orbit with 0 < b <
√

2 and assume that it exists for all ρ � 1 and is
smooth at ρ = 0. Let us define the function

h(ρ) = −U ′(ρ)

U(ρ)
. (53)

Using equation (5) we get

h′(ρ) = (ρ − ρ3)U ′2 + (2 − 4ρ2)UU ′ − ρU 2(2 − U 2)

ρ(1 − ρ2)U 2
. (54)

It follows from (52) that h(1) = 1
2 (2 − b2) > 0 and h′(1) = 1

8 (2 − b2)(b2 − 4) < 0. We will
show that h′(ρ) < 0 for all ρ > 0 and therefore limρ→0+ h(ρ) � h(1) > 0. But smoothness
at ρ = 0 requires that h(0) = 0. This contradiction will prove step 1. To show that h′(ρ) < 0
we show equivalently that the numerator of the fraction on the right-hand side of equation (54)

n(ρ) = (ρ − ρ3)U ′2 + (2 − 4ρ2)UU ′ − ρU 2(2 − U 2) (55)

is non-positive. From (52) we have n(1) = 0 and n′(1) = 1
4b2(4 − b2)(2 − b2) > 0, hence

n(ρ) is negative in the left neighbourhood of ρ = 1. If n(ρ) is negative for all ρ < 1 then we
are done. Thus, let us suppose that there is a ρ = R such that n(R) = 0 and n(R) < 0 for
R < ρ < 1. We will show that this is impossible because n′(R) > 0. Note that equation

n(R) = (R − R3)U ′2 + (2 − 4R2)UU ′ − RU 2(2 − U 2) = 0, (56)

viewed as a formal quadratic equation for U ′, can be satisfied only if the discriminant (divided
by a positive factor 4U 2 for convenience)

� = 1 − R2(1 − R2)(2 + U 2) (57)

is non-negative. A calculation yields

n′(R) = 2U

R(1 − R2)

[−(� + R2)U ′ + R3U(U 2 − 2)
]
, (58)

where terms involving U ′2 were eliminated using equation (56). If U(R) �
√

2 then the
right-hand side of equation (58) is manifestly positive. The case 0 < U(R) <

√
2 requires

more work. In this case equation (56) has a single negative root

U ′(R) =
(

1 − 2R2 +
√

�
)

U

R(R2 − 1)
. (59)

Substituting this value into (58) we get n′(R) = (positive factor) · N(U, R), where

N(U, R) = (� + R2)(1 − 2R2 +
√

�) + (1 − R2)R4(U 2 − 2). (60)

One can check that in the rectangle 0 � U �
√

2, 0 � R � 1 the function N(U, R) has
no critical points so its minima and maxima occur on the boundary. It is easy to verify that
N(U, R) � 0 on all sides of the rectangle, thus N(U, R) > 0 inside the rectangle. This
implies that n′(R) > 0 and completes the proof of step 1.

Step 2. Consider a b-orbit with b >
√

2 and assume that it exists for all ρ � 1. It follows
immediately from equation (5) that U(ρ) is monotone increasing. Next, let

g(ρ) = ρ4U(ρ)U ′(ρ) − ρ3

6
(U 2(ρ) − 2). (61)
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From (52) we get g(1) = b(b2 − 2)/3 > 0. We claim that g(ρ) > 0 for all ρ � 1. To show
this let us compute g′(ρ) at a point where g(ρ) = 0. After a straightforward calculation we get

g′(g = 0) = ρ2(U 2 − 2)

18(ρ2 − 1)

(
(17U − 9)ρ2 + U + 3

)
. (62)

Since the right-hand side of this equation is manifestly positive for ρ > 1, g(ρ) cannot cross
zero from above, hence g(ρ) > 0 for all ρ � 1, as claimed. Thus

U ′

U 2 − 2
>

1

6ρ
, (63)

which after integration from 1 to ρ yields a contradiction

U(ρ) − √
2

U(ρ) +
√

2
� b − √

2

b +
√

2
exp

(
ln(ρ)

3
√

2

)
, (64)

which completes the proof of step 2.

It follows from the above analysis that each self-similar solution Un(ρ) with n � 1 is
singular at some ρn > 1. This fact suggests that these solutions do not participate in the
Cauchy evolution of smooth initial data which in turn corroborates the conjecture that the
constant solution U0 = √

2 is a universal attractor for blowup solutions (see [9] for what is
known rigorously, [3] for the stability analysis of U0 and [10] for recent numerical evidence).
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Appendix

We present here an alternative ‘soft’ topological proof of existence of infinitely many smooth
self-similar solutions of equation (5).

We already know that given any c there is a unique smooth solution U(ρ, c) of equation (5)
satisfying U(0, c) = c defined for all 0 � ρ < 1. Similarly, there is a unique smooth solution
U(ρ, b) satisfying U(1, b) = b defined for all 0 < ρ � 1.

We express these solutions in terms of polar coordinates, that is we define

r(ρ, c) =
√

U(ρ, c)2 + U ′(ρ, c)2, θ(ρ, c) = arctan

(
U ′(ρ, c)

U(ρ, c)

)
, (65)

and similarly

R(ρ, b) =
√

U(ρ, b)2 + U ′(ρ, b)2, β(ρ, b) = arctan

(
U ′(ρ, b)

U(ρ, b)

)
. (66)

Let ρ0 = √
2/3. Since the region {(ρ, c)|0 < ρ � ρ0, c > 0} (respectively {(ρ, b)|ρ0 �

ρ � 1, b > 0}) is simply connected, the angle θ(ρ, c) (respectively β(ρ, b)) is defined
unambiguously once we specify its value at any point in the domain. We set θ(0, 1) = 0,
hence θ(0, c) = 0 for all c > 0. Similarly, we set β(1,

√
2) = 0; then −π/2 < β(1, b) < π/2

for all b > 0. Next, we define maps


 : R+ 	 c → 
(c) = (θ(ρ0, c), r(ρ0, c)) ∈ R2
+, (67)

and

�k : R+ 	 b → �k(b) = (β(ρ0, b) − 2kπ, R(ρ0, b)) ∈ R2
+. (68)
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Note that if �k(b) = 
(c) for some b and c, then we have a solution defined on the whole
interval 0 � ρ � 1 in the nodal class with index n = 2k (according to our terminology from
section 3).

Lemma 1. limc→0 r(ρ0, c) = 0 and limb→0 R(ρ0, b) = 0.

Proof. Follows immediately from continuous dependence on initial conditions.

Lemma 2. limc→∞ θ(ρ0, c) = −∞ and limb→∞ β(ρ0, b) = ∞.

Proof. Follows from the asymptotic analysis given in section 4.

Lemma 3. For any positive b and c we have θ(ρ, c) < π/2 and β(ρ, b) > −π/2.

Proof. We have θ(0, c) = 0 and if θ(ρ, c) = π/2, then U(ρ, c) = 0, U ′(ρ, c) > 0 so
θ ′(ρ, c) < 0, contradiction. Similarly, we have β(1, b) > −π/2 and if β(ρ, b) = −π/2 then
U(ρ, b) = 0, U ′(ρ, b) < 0 so β ′(ρ, b) > 0, contradiction.

Lemma 4. If 0 < c < 2, then −π/2 < θ(ρ0, c) < π/2 and similarly, if 0 < b < 2, then
−π/2 < β(ρ0, b) < π/2.

Proof. We define the function

H(ρ) = 1

2
(1 − ρ2)U ′2 − U 2 +

1

4
U 4. (69)

We have H ′(ρ) = (3ρ − 2/ρ)U ′2 so H(ρ) decreases on (0, ρ0] and increases on [ρ0, 1]. If
0 < c < 2 and ρ � ρ0 then H(ρ, c) < H(0, c) < 0, hence U(ρ, c) > 0 (since H � 0
if U = 0). Similarly, if 0 < b < 2 and ρ � ρ0 then H(ρ, b) < H(1, b) < 0, hence
U(ρ, b) > 0.

Now we are ready to prove the following theorem.

Theorem. For any positive integer n there exist parameters (cn, bn) such that the
corresponding solution U(ρ, cn) = U(ρ, bn) is in the nth nodal class.

Proof. If n = 2k then by lemmas 2 and 3, for any integer k � 1 we may choose cR > cL > 2
(respectively bR > bL > 2) such that θ(ρ0, cL) = −π/2 and θ(ρ0, cR) = −(2k + 1)π

(respectively β(ρ0, bL) = π/2 and β(ρ0, bR) = (2k + 1)π ). Let cR (respectively bR) be the
smallest such c (respectively b). Then −π/2 > θ(ρ0, c) > −(2k +1)π for bL < b < bR .Then
π/2 < β(ρ0, b) < (2k + 1)π for bL < b < bR . Next, we choose m and M such that
m < r(ρ0, c) < M for cL < c < cR and m < R(ρ0, b) < M for bL < b < bR . Finally,
by lemma 1 we choose c̃ < cL (respectively b̃ < bL) such that r(ρ0, c̃)) = m (respectively
R(ρ0, b̃) = m) and let c̃ (respectively b̃) be the largest such c (respectively b). Let � be the
rectangle with vertices (−(2k + 1)π, m),(−(2k + 1)π, M),(π, m),(π, M). The ordered points
A = �(b̃), B = 
(c̃), C = �(bR), D = 
(cR) lie on the boundary of �, thus it follows
from elementary topology that the curve {
(c)|c̃ � c � cR} from B to D and the curve
{�k(b)|b̃ � b � bR} from A to C must intersect.

If n = 2k + 1 we can repeat the above argument with b < 0 making the obvious
modifications in lemma 3 (β(ρ, b) > π/2) and lemma 4 (π/2 < β(ρ, b) < 3π/2).
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[8] Breitenlohner P, Forgács P and Maison D 1994 Commun. Math. Phys. 163 141
[9] Merle F and Zaag H 2005 Math. Ann. 331 395

[10] Bizoń P and Zenginoglu A 2009 Nonlinearity 22 2473

http://dx.doi.org/10.1088/0951-7715/20/9/003
http://dx.doi.org/10.1088/0951-7715/17/6/009
http://dx.doi.org/10.1007/s002080050013
http://dx.doi.org/10.1142/S0219199702000658
http://dx.doi.org/10.1007/BF02101738
http://dx.doi.org/10.1007/s00208-004-0587-1
http://dx.doi.org/10.1088/0951-7715/22/10/009

	1. Introduction
	2. Dynamical system and local existence
	3. Global existence
	4. Asymptotic formula for bn and cn
	5. Linear stability analysis
	6. Behaviour of solutions outside the light cone
	 Acknowledgments
	 Appendix
	 References

