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Abstract
We consider the exterior Cauchy–Dirichlet problem for equivariant wave maps
from 3 + 1 dimensional Minkowski spacetime into the three sphere. Using
mixed analytical and numerical methods we show that, for a given topological
degree of the map, all solutions starting from smooth finite energy initial data
converge to the unique static solution (harmonic map). The asymptotics of
this relaxation process is described in detail. We hope that our model will
provide an attractive mathematical setting for gaining insight into dissipation-
by-dispersion phenomena, in particular the soliton resolution conjecture.
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(Some figures may appear in colour only in the online journal)

1. Introduction

Dissipation of energy by dispersion is the key mechanism of relaxation to a static equilibrium
in infinite dimensional Hamiltonian systems on unbounded domains [1]. It occurs in a variety
of physical situations ranging from dynamics of gas bubbles in a compressible fluid [2] to
formation of black holes in gravitational collapse [3]. Despite great physical importance,
mathematical understanding of dissipation-by-dispersion phenomena is still in its infancy,
especially in the non-perturbative regime. Thus, to make progress it would be useful to have a
good toy-model of this phenomenon. Among the desired features of such a model we list the
following: (1) the evolution equation is as simple as possible, preferably a scalar semilinear
equation, (2) solutions are globally regular in time for all reasonable initial data, hence the
development of singularities is not an issue, (3) the static equilibrium is unique (so that there
is no competition between different attractors) and rigid (so that no modulation analysis is
needed), (4) the linearization about the static solution has a purely continuous spectrum (no
unstable, neutral or oscillatory modes), (5) the linearized waves decay fast enough to start the
Duhamel iteration argument (the main technical tool in proving asymptotic stability). If all
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these properties hold, then it is natural to expect that the static solution is a global attractor, i.e.
all solutions converge to it as time goes to infinity while the excess energy is being radiated away
to infinity. This is a particularly simple case of the soliton resolution conjecture which asserts
that generic global in time solutions of nonlinear dispersive equations resolve asymptotically
into a superposition of a coherent structure (solitons) and free radiation [1, 4].

The purpose of this paper is to propose a model which enjoys all the properties listed above.
We hope that the insight gained by studying this model may help in understanding real physical
problems. The rest of the paper is organized as follows. In section 2 we define the model.
Static solutions are discussed in section 3. In section 4 we describe the spectral properties of the
linearized problem. Finally, these analytic results are confronted with numerical simulations
in section 5.

2. Model

A map U : M �→ N from a spacetime (M, gαβ) into a Riemannian manifold (N , GAB) is
said to be the wave map if it is a critical point of the action

S[U ] :=
∫

M

∂XA

∂xα

∂XB

∂xβ
gαβ GAB

√−g dx, (1)

where xα and XA are local coordinates on M and N , respectively. Variation of the action (1)
gives a system of semilinear wave equations

�gX
C + �C

AB

∂XA

∂xα

∂XB

∂xβ
gαβ = 0, (2)

where �g := 1√−g
∂α(gαβ

√−g ∂β) is the wave operator associated with the metric gαβ and

�C
AB are the Christoffel symbols of the target metric GAB . In this paper, we consider the wave

maps from M = R
3+1, the 3 + 1 dimensional Minkowski spacetime, into N = S3, the unit

3-sphere. On R
3+1 we use standard spherical coordinates (t, r, θ, φ) and on S3 we choose polar

coordinates XA = (�, �, 	), hence

GABdXAdXB = d�2 + sin2 �(d�2 + sin2 � d	2). (3)

In addition, we assume that the map U is spherically 
-equivariant, that is

� = u(t, r), (�, φ) = �
(θ, φ) , (4)

where �
 : S2 �→ S2 is a harmonic eigenmap with eigenvalue 
(
 + 1) (
 ∈ N). Under these
assumptions the wave map equation (2) reduces to the single scalar wave equation

− ü + u′′ +
2

r
u′ − 
(
 + 1)

2r2
sin 2u = 0 , (5)

where dots and primes denote derivatives with respect to t and r , respectively.
Equation (5) is invariant under scaling: if u(t, r) is a solution, so is uλ(t, r) = u(t/λ, r/λ).

The total conserved energy scales as E[uλ] = λE[u], which means that equation (5) is
supercritical and singularities are expected to develop for some initial data. In fact, it is known
that equation (5) has infinitely many self-similar solutions [5] which are explicit examples of
singularities forming in finite time from regular initial data [6]. Moreover, the ground state self-
similar solution is stable and acts as an attractor for generic large initial data [7, 8]. Note also
that the scaling symmetry precludes existence of nontrivial static solutions. The formation
of singularities for generic initial data and the absence of nontrivial static solutions make
equation (5) uninteresting from a physical point of view. One way to cure these deficiencies
is to modify the action (1) by adding a suitable higher order term with subcritical scaling.
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Such a term breaks the scaling symmetry and prevents shrinking of solutions to zero size.
The best known modification of this type is the Skyrme model [9], which admits stable static
solutions (so called skyrmions) and enjoys global regularity in time [10]. Unfortunately, these
nice features are achieved at the expense of a significant increase in complexity: the evolution
equation is quasilinear and very difficult to analyze (note that it took fifty years to prove
that no singularities can form during the evolution). The numerical evidence for the soliton
resolution conjecture in the Skyrme model was given in [11] but to our knowledge there is no
corresponding rigorous result.

Motivated by a desire to have a simpler model than Skyrme’s and yet possessing similar
properties we proceed in a different manner. We keep the action unchanged but modify the
domain of the wave map. Namely, we consider equation (5) outside a ball of radius R, that is
for r � R and impose the Dirichlet condition at the boundary u(t, R) = 0 [12]4. Hereafter,
we choose the unit of length such that R = 1. We are interested in the long-time behaviour of
solutions starting from smooth initial data with finite energy

E(u) := 1

2

∫ ∞

1

(
r2u̇2 + r2u′2 + 
(
 + 1) sin2u

)
dr < ∞ . (6)

Note that finite energy solutions must satisfy the boundary condition at infinity u(t, ∞) = Nπ ,
where an integer N is the topological degree of the map (sometimes called the winding number).
Since the degree cannot change during the evolution, the initial value problem for equation (5)
breaks into infinitely many disjoint topological sectors labelled by the degree N . Note also
that global regularity in time is automatically guaranteed because by spherical symmetry
singularities for equation (5) cannot occur for r > 0. In other words, by cutting off the ball
from the domain of the map we make the equation effectively subcritical.

Knowing that solutions exist for all times, it is natural to ask how they behave as t → ∞.
Below we show that for each 
 ∈ N and each N ∈ Z there exist a unique static solution u
,N(r)

which is linearly stable. We conjecture that the solution u
,N is a universal global attractor,
that is all solutions starting with smooth initial data of degree N asymptotically converge to it.
The numerical evidence supporting this conjecture is presented in section 5.

3. Static solutions

To study static solutions it is convenient to use new variables x = ln r and v(x) = u(r). Then,
time-independent equation (5) takes the autonomous form

v′′ + v′ − 
(
 + 1)

2
sin 2v = 0, (7)

which in mechanics describes the motion of a pendulum with constant friction. A regular
finite energy solution of degree N corresponds to a trajectory which in the phase plane (v, v′)
starts from a point (0, a) and goes to the point (Nπ, 0) as x → ∞. The existence and
uniqueness of such a trajectory for each N follows from elementary phase-plane analysis.
The phase portrait displaying the flow of the vector field X = (v′, −v′ + 1

2
(
 + 1) sin 2v) is
depicted in figure 1. The flow has stable focal points at ((N + 1/2)π, 0)) with eigenvalues
α = (−1 ± i

√
4
(
 + 1) − 1)/2 and saddle points at (Nπ, 0) with eigenvalues α = 
 and

α = −
 − 1. From each saddle point there emerge two separatrices corresponding to the
stable (α = −
 − 1) and unstable (α = 
) manifolds. It is routine to show that close to the
saddle the stable manifold can be parametrized in the form

v(x) = Nπ − b e−(
+1)x + O(e−3(
+1)x), (8)
4 Searching the literature we found that this modification was first proposed by Balakrishna et al [12] (as a model of
the short-distance cutoff in QCD), but we are not aware of any further studies of this model.
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Figure 1. The phase portrait for equation (7) for 
 = 2.

Table 1. Parameters of the static solutions.


 = 1 
 = 2 
 = 3 
 = 4 
 = 5 
 = 6

a
,1 3.786 299 4.327 397 4.800 690 5.226 581 5.617 059 5.979 801
b
,1 4.847 841 6.147 165 7.240 761 8.203 436 9.073 200 9.872 569
a
,2 6.983 263 7.601 218 8.161 078 8.677 933 9.161 071 9.616 701
b
,2 15.810 784 29.162 429 46.410 705 67.463 775 92.172 786 120.372 175

where the coefficients of all higher order terms are determined by the parameter b. Generically
the point (0, a) belongs to the basin of attraction of one of the focal points but for isolated
values a = a
,N this point lies on the separatrix which runs into the saddle (Nπ, 0) along the
stable manifold.

Translating the above analysis back to the original variables we conclude that for each
integer N there exists a unique static solution u
,N(r) of equation (5) satisfying the boundary
conditions u
,N(1) = 0 and u
,N(∞) = Nπ . This solution is parametrized by the pair of
numbers (a
,N , b
,N ) such that u′


,N (1) = a
,N and

u
,N(r) = Nπ − b
,N

r
+1
+ O(r−3(
+1)) as r → ∞. (9)

The parameters a
,N and b
,N can be determined numerically with the help of a shooting
method. A few values of these parameters for different 
 and N are listed in table 1, while
figure 2 depicts several profiles u
,N(r). We note that the static solutions described above were
first found by Balakrishna et al [12] who used them as a simple model of nucleons.

Remark 1. It does not seem feasible to express the solutions u
,N(r) in closed form; however,
for large 
 one can obtain a good analytic approximation for u
,1 as follows. Let y = (
+1)x and
v̄(y) = v(x). Then, in the limit 
 → ∞ equation (7) becomes v̄′′ − 1

2 sin 2v̄ = 0. The solution
of this limiting equation satisfying the boundary condition v̄(∞) = π is v̄(y) = 2 arctan(Aey),
where A is an integration constant. Returning to the variable x and setting A = 2/b
,1 (to
agree with (8)), we obtain the large 
 approximation v(x) ≈ 2 arctan( 1

2b
,1
e(
+1)x), which is valid

outside the boundary layer of width O(
−1) near x = 0. Using matched asymptotics one can
systematically match this outer solution to the inner solution satisfying the boundary condition
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Figure 2. Left: profiles of the static solutions for N = 1, 2 and 
 = 1, 2, 3. Right: deviation of the
approximate solution ū
,1(r) = v̄
,1(ln r) from the true solution u
,1(r).

v(0) = 0, v(0) = a
,1; however, for practical purposes the following ad hoc modification
(which does not alter the large x asymptotics) is good enough:

v
,1(x) ≈ v̄
,1(x) = 2 arctan

(
2

b
,1
(e(
+1)x − e−(
+2)x)

)
. (10)

As shown in figure 2, this approximation is quite accurate already for 
 = 1.

4. Linearization about static solutions

Substituting u(t, r) = u
,N(r)+w(t, r) into equation (5) and linearizing we obtain the evolution
equation for small perturbations around the static solution

ẅ − w′′ − 2

r
w′ +


(
 + 1)

r2
w + V
,N(r)w = 0, V
,N (r) = −2
(
 + 1)

r2
sin2 u
,N(r).

(11)

Assuming harmonic time dependence, w(t, r) = e−iλtψ(r), we obtain the eigenvalue problem

− ψ ′′ − 2

r
ψ ′ +


(
 + 1)

r2
ψ + V
,N(r)ψ = λ2ψ (12)

for ψ ∈ L2([1, ∞), r2 dr) and satisfying ψ(1) = 0. The spectrum is purely continuous
λ2 � 0. To see this, note that ψ(r) = r

du
,N (r)

dr
satisfies equation (12) for λ2 = 0, as can be

readily checked by differentiating the time-independent equation (5) with respect to r . The
presence of this zero mode is the consequence of scale invariance of equation (5). The zero
mode is not an eigenfunction because it does not vanish at r = 1, nonetheless the fact that it
has no zeros (since u
,N(r) is monotone) implies by the Sturm oscillation theorem that there
are no negative eigenvalues. Therefore, the static solutions u
,N are linearly stable.

The linear stability is only the first necessary step in establishing asymptotic stability.
To understand the latter we need to determine the quasinormal modes (also called complex
resonances or scattering frequencies), that is solutions of equation (12) which vanish at r = 1
and satisfy the outgoing wave condition ψ(r) ∼ 1

r
eiλr with 	(λ) < 0 for r → ∞. The

fundamental (that is, the least damped) quasinormal mode is expected to govern an intermediate
phase of the relaxation to the static solution.

We first describe the quasinormal modes about the trivial solution u
,0 = 0. In this case
equation (12) takes the form of the spherical Bessel equation

− ψ ′′ − 2

r
ψ ′ +


(
 + 1)

r2
ψ = λ2ψ, (13)
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whose exact outgoing solutions are given by the spherical Hankel functions of the first kind
ψ(r) = h

(1)

 (λr). Thus, the quantization condition for the eigenfrequencies of quasinormal

modes is ψ(1) = h
(1)

 (λ) = 0, which is a polynomial equation of order 
, hence has exactly 


roots. For example, using the formulae for the first two spherical Hankel functions

h
(1)
1 (z) = eiz

(
1

iz2
− 1

z

)
, h

(1)
2 (z) = eiz

(
3

iz3
− 3

z2
− 1

iz

)
, (14)

one obtains λ = −i for 
 = 1 and λ = ±√
3/2 − 3i/2 for 
 = 2. From the known results on

zeros of Hankel’s functions it follows that the eigenfrequency of the fundamental quasinormal
mode for large 
 is (see proposition E.2 in [2])

λ
 = ν − ζν
1
3 + 3

10ζ 2ν− 1
3 + O

(
ν−1

)
, (15)

where ν = 
 + 1/2, ζ = 2− 1
3 e− 2π i

3 η1, and η1 
 −2.338 is the first zero of the Airy function.
For N �= 0 it is not possible to calculate the quasinormal modes analytically, e.g.

because the potential V
,N(r) in (12) is not known in closed form, thus we must resort to
numerical methods. We use a shooting method which goes as follows. First, we introduce
new independent and dependent variables

ρ = 1

r
, η(ρ) = re−iλrψ(r). (16)

The advantage of this transformation is two-fold: (i) it peels off the oscillatory behaviour of
ψ(r) at infinity and (ii) compactifies the semi-infinite interval 1 � r < ∞ to the finite interval
0 � ρ � 1 (switching the endpoints). In terms of the new variables equation (12) becomes

ρ2η′′ + (2ρ − 2iλ)η′ − 
(
 + 1)η + 2
(
 + 1) sin2 (
u
,N

)
η = 0. (17)

Next, we solve this equation numerically away from the endpoints starting from the desired
‘initial values’. At ρ = 1 the initial value is η(1) = 0 (and an arbitrary nonzero η′(1)). At
ρ = 0 the desired outgoing solution is defined by the asymptotic expansion

η(ρ) ∼

∑

j=0

ij (
 + j)!

(2λ)j j !(
 − j)!
ρj +

∞∑
j=2
+3

cjρ
j . (18)

The first finite sum in (18) corresponds to the free outgoing solution. The second infinite sum is
the divergent asymptotic series (since ρ = 0 is the irregular singular point) whose coefficients
cj (λ, b
,N ) can be calculated recursively using (9). We use the series (18) to impose the initial

value at ρ = 0.1. Note that the unwanted ingoing solution is of the order O(e− 2|	(λ)|
ρ ), hence

it is difficult to keep track of it numerically, especially if |	(λ)| is large. To suppress the
contamination of the initial value at ρ = 0.1 by this exponentially small ingoing admixture it
is crucial to compute the series (18) with very high precision. We achieve this precision by the
optimal truncation of the asymptotic series (alternatively, the Padé summation could be used).
The requirement that the logarithmic derivatives of the two numerical solutions launched from
ρ = 0.1 and ρ = 1 join smoothly at a midpoint, say ρ = 0.5, serves as the quantization
condition for quasinormal modes. The fundamental eigenfrequencies determined in this
manner are listed in table 2. We denote the j th (j = 0, 1, . . .) quasinormal eigenfrequency
and eigenmode by λ

j


,N = �
j


,N − i �j


,N and ψ
j


,N (r). We adopt the convention that for given

N and 
 the damping rate �
j


,N increases with j , hence the j = 0 mode is fundamental. Below,
to avoid notational clutter, we drop the index j = 0 on the fundamental quasinormal modes.

Note that as 
 increases, the frequencies �
,N increase while the damping rates �
,N

rapidly decrease to zero (see figure 4). This behaviour was intuitively to be expected in view
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Table 2. The fundamental eigenfrequencies λ
,N = �
,N − i �
,N for N = 1, 2.


 = 1 
 = 2 
 = 3 
 = 4 
 = 5 
 = 6

�
,1 0.425 517 0.910 515 1.346 222 1.752 249 2.129 364 2.475 564
�
,1 0.347 445 0.246 627 0.151 154 0.080 210 0.035 763 0.012 945
�
,2 0.228 006 0.436 739 0.632 007 0.814 959 0.982 609 1.137 494
�
,2 0.121 276 0.058 779 0.021 354 5.286 2e − 3 8.649 1e − 4 1.003 7e − 4

Figure 3. The potentials V
,N (r) for N = 1, 2 and 
 = 1, 2, 3.

Figure 4. The distribution of fundamental eigenfrequencies λ
,N for N = 1, 2 and 
 = 1, 2, . . . , 15
in the complex λ-plane. Numerics indicates that �
,N ∼ 
1/2 and �
,N ∼ e−
(
+1) for large 
.

of the fact that the potential V
,N(r) becomes narrower and deeper as 
 grows (see figure 3)
(hence the waves get increasingly squeezed and trapped as 
 grows).

To reassure ourselves and verify independently the above computation we solved
numerically the linearized evolution equation (11). According to the scattering theory, for
intermediate times the solution at a fixed point is space can be represented by the sum of
quasinormal modes

w(t, r) ∼
∑

j

Aj exp(−iλj


,N t)ψ
j


,N (r), (19)

where the coefficients Aj depend on initial data. After a short transient time, all the quasinormal
modes but the fundamental one die out (see figure 5), hence we can readily determine the
fundamental eigenfrequency by fitting the exponentially damped sinusoid to the numerical
solution. The results of such a fit agree to four (for 
 = 1, 2) and six (for 
 � 3) decimal places
with the values given in table 2. To compute the parameters of excited modes we applied
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Figure 5. Quasinormal ringdown to zero for the solution of the linearized equation (11) for N = 2
and 
 = 10. After the passage of the direct signal from the initial data, an observer sitting at r = 5
sees two clearly pronounced trains of exponentially damped oscillations which correspond to the
first excited quasinormal mode with λ1

10,2 = 6.2925 − i 0.1718 and the fundamental quasinormal

mode with λ10,2 = 1.6862 − i 9.1606 × 10−10, respectively.

the Prony method [13]. The outcome of this computation suggests that there are exactly N

quasinormal modes about the solution u
,N .

Remark 2. For very late times the linear evolution described by equation (11) changes character
from the quasinormal ringdown (which becomes negligible) to the polynomial decay called
a tail. The tail is due to the backscattering of waves at large distances and its decay rate is
insensitive to the presence of the ball. According to the linear scattering theory (see e.g. [14]),
for the potential falling off as r−β (β > 3) for large r and compactly supported initial data,
the tail decays as t−γ , where γ = 2
 + β. In the case at hand, it follows from (9) and (11) that
V
,N(r) ∼ r−(2
+4) as r → ∞, hence γ = 4
 + 4. We note for completeness that for the initial
data which are not compactly supported and fall off polynomially at spatial infinity there is
also a direct polynomially decaying in time signal from the data.

5. Numerical evidence

In this section, we solve numerically equation (5) with the Dirichlet boundary condition
u(t, 1) = 0 and smooth finite energy initial data of various topological degrees N . The
numerical technique is standard. We use the method of lines with a fourth-order Runge–Kutta
time integration and fourth-order spatial finite differences. Our computational domain is large
enough so that its outer boundary is causally disconnected from the region of interest. To
ensure numerical stability, the high-frequency modes were damped using the Kreiss–Oliger
dissipation. To suppress round-off errors, all simulations were performed in the quadruple
(128-bit) arithmetic precision. It is worth stressing that the Dirichlet boundary condition and
smoothness imply that the Taylor series expansion at r = 1 takes the form

u(t, r) = a(t)(r − 1) − a(t)(r − 1)2 + O((r − 1)3), (20)

where a free function a(t) determines recursively all the coefficients of the series. Taken at
t = 0, the expansion (20) and its time derivative express the compatibility conditions between
the initial values and the Dirichlet boundary condition.

Our main observation (illustrated in figure 6) is that for all 
 every solution of equation (5)
satisfying u(t, 1) = 0 and starting from smooth finite energy initial data of degree N converges
(in any compact interval) to the static solution u
,N as t → ∞. A rigorous proof (and a precise
formulation) of this claim is left as a challenge to the PDE experts.

Below we present some more quantitative aspects of the relaxation process. We focus on
pointwise convergence in the timelike direction, that is we look at the time development of
u(t, r) at a fixed point in space. We consider two kinds of initial data: (i) spatially localized
perturbations of static solutions and (ii) arbitrary initial data with different next-to-leading
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Figure 6. Convergence to the static solution u1,1(r) (dashed line).

Figure 7. Pointwise convergence to the static solution for 
 = 1, 2, 3 and N = 0 (left panel) and
N = 1 (right panel) for exponentially localized perturbations of the static solution of the form (21).
Quasinormal ringdown for intermediate times yields to a polynomial tail for late times. In both
cases the tail decays as t−5 (for 
 = 1) and as t−(2
+2) (for 
 � 2). Note that for N � 1, as 


increases, the duration of the ringdown phase rapidly increases because the damping rate of the
fundamental quasinormal mode decreases while the decay rate of the tail increases.

order asymptotic behaviour at spatial infinity than static solutions. We illustrate case (i) with
initial data of the form of the ‘kicked’ static solution

u(0, r) = u
,N(r), u̇(0, r) = ε(r − 1)3 exp

(
− (r − r0)

2

2σ 2

)
(21)

with parameters ε = 0.8, r0 = 1.5, σ = 0.1, and case (ii) with initial data

u(0, r) = 2(r − 1)2

1 + (r − 1)2
arctan(r − 1), u̇(0, r) = 0. (22)

In both cases the intermediate phases of evolution are similar and have the form of quasinormal
ringdown, which is dominated by the fundamental quasinormal mode. Thus, this phase is well
described by the linearized approximation (see figures 7–9).

The late time behaviour is more complicated because there are three competing
contributions to the tail: two kinds of linear tails mentioned in remark 2 and the nonlinear
tail caused by self-interaction of the field. The latter was described in detail in [15] in the
framework of weakly nonlinear perturbation analysis, in particular it was shown there that the
nonlinear tail decays as t−5 for 
 = 1 and as t−(2
+2) for 
 � 2. For the initial data (21) this tail
dominates the late time evolution (figure 7) while for the initial data (22) the linear tail coming
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Figure 8. Snapshots from the evolution starting from initial data (21) for 
 = 3, N = 1. Behind
the wavefront, the spatial profile of the solution approaches the spatial profile of the fundamental
quasinormal eigenfunction A �(e−iλ3,1(t−t0)ψ3,1(r)). The parameters A and t0 were fitted at t = 4.5
once for all times. For better visibility the profiles are multiplied by e�3,1 t (upper plots) and
re�3,1(t−r) (bottom plot).

Figure 9. Convergence to the static solution u
,N (r) for 
 = 1, 2, 3, 4 and N = 1 for initial data
(22). The deviation of these data from the static solution is of the order O(r−(
+1)) for large r

which leads to the linear tail decaying as t−γ with γ = 2 (
 = 1), γ = 4 (
 = 2), γ = 4 (
 = 3),
and γ = 6 (
 = 4). The nonlinear tail is subdominant.

from the deviation of asymptotic behaviour of the data from the static solution is dominating
(figure 9).
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