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Abstract
In an attempt to understand the soliton resolution conjecture, we consider the
sine-Gordon equation on a spherically symmetric wormhole spacetime. We
show that within each topological sector (indexed by a positive integer degree
n) there exists a unique linearly stable soliton, which we call the n-kink. We give
numerical evidence that the n-kink is a global attractor in the evolution of any
smooth, finite energy solutions of degree n. When the radius of the wormhole
throat a is large enough, the convergence to the n-kink is shown to be governed
by internal modes that slowly decay due to the resonant transfer of energy to
radiation. We compute the exact asymptotics of this relaxation process for the
one-kink using the Soffer–Weinstein weakly nonlinear perturbation theory.

Keywords: soliton resolution conjecture, asymptotic stability of solitons, non-
linear dispersive equations
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(Some figures may appear in colour only in the online journal)

1. Introduction

If a solution of an evolution equation exists for all times t, then it is natural to ask how it
behaves as t →∞. This question is particularly interesting if the equation admits solitons (spa-
tially localised, finite energy solutions) because they may appear as late-time attractors. For
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Figure 1. (Left panel) The isometric embedding of the constant time equatorial cross-
section of the wormhole in R

3. (Right panel) The conformal diagram of the wormhole
spacetime. The boundaries of each side of the diamond, denoted by J ±

L,R, represent
future/past (t →±∞) and left/right (r →∓∞) null infinities.

nonlinear dispersive wave equations it is believed that for any reasonable (e.g. smooth and
finite energy) generic initial data, the solution eventually resolves into a superposition of a
radiative component plus a finite number of solitons. This belief, known as the soliton resolu-
tion conjecture [1], is fairly well understood for small perturbations of solitons [2, 3], however
little is known in the non-perturbative regime (but the one-dimensional completely integrable
equations where solutions can be computed explicitly via inverse scattering methods [4, 5] and
few results in higher dimensions, e.g. [6, 7]).

In an attempt to understand the soliton resolution conjecture in a simple setting, two of
us proposed in [8] to study nonlinear waves propagating on a spherically symmetric curved
spacetime with the metric

ds2 = −dt2 + dr2 + (r2 + a2)dω2, (1)

where (t, r) ∈ R
2, dω2 is the round metric on the unit two-sphere, and a is a positive constant.

This spacetime, introduced by Ellis [9] and Bronnikov [10], is the simplest example of a worm-
hole geometry that has two asymptotically flat ends at r →±∞ connected by a spherical throat
(minimal surface) of area 4πa2 at r = 0 (figure 1).

Although the wormhole belongs more to science-fiction than physics [11], it has a num-
ber of features that makes it an attractive testing ground for the soliton resolution conjecture.
First, there is no singularity at r = 0 which basically ensures global well-posedness for dis-
persive equations with coercive nonlinearities. Second, due to the presence of the length scale
a, Derrick’s non-existence scaling arguments are evaded and solitons do exist (often in abun-
dance) for some nonlinearities. Third, if a soliton exists, it is completely rigid so no modula-
tion analysis is needed. Finally, the equations posed on the wormhole combine the simplicity
of one-dimensional equations on the whole real line with the three-dimensional dispersive
properties.

In [8] the soliton resolution conjecture was formulated and verified numerically for equivari-
ant wave maps from the wormhole (1) into the three-sphere. In addition, the rate of convergence
to the soliton (which in this case is a harmonic map from a t = const. hypersurface of the
wormhole into the three-sphere) was computed by perturbation methods. Subsequently, the
conjecture made in [8] was proved (without a decay rate, though) by Rodriguez [12, 13] via
the concentration-compactnessmethod as in [7]. The key ingredient in getting these results was
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the fact that the linearised perturbations around the solitons decay in time. In this paper, we
consider a different nonlinearity for which the latter property does not hold and the asymptotic
stability of solitons is an inherently nonlinear phenomenon.

On the wormhole spacetime we consider a real scalar field φ obeying the semilinear wave
equation4

�gφ+ sin(2φ) = 0, (2)

where �g is the wave operator associated with the metric (1). Assuming that φ = φ(t, r), we
get

φ̈ = φ′′ +
2r

r2 + a2
φ′ − sin(2φ), (3)

where an overdot and prime denote derivatives with respect to t and r. For a = ∞ this equation
reduces to the one-dimensional sine-Gordon equation

φ̈ = φ′′ − sin(2φ), (4)

which is completely integrable, hence for large values of a equation (3) can be viewed as a
non-integrable perturbation of (4).5

The conserved energy associated with equation (3) reads

E =

∞∫
−∞

(
1
2
φ̇2 +

1
2
φ′2 + sin2φ

)
(r2 + a2)dr. (5)

Finiteness of energy requires that φ(t,−∞) = n−π, φ(t,∞) = n+π, where n− and n+ are inte-
gers. Without loss of generality we choose n− = 0; then n = n+ determines the topological
degree of the solution (which is preserved in the evolution).

The goal of this paper is to describe the asymptotic behaviour of solutions of equation (3)
for t →∞. Due to the dissipation of energy by dispersion, solutions are expected to settle down
to stationary states, in accord with the soliton resolution conjecture. In section 2 we prove that
for each degree n there exists a unique smooth, finite-energy stationary solution, which we call
the n-kink. The linear stability of the n-kinks is analysed in section 3. We show that the spec-
trum of the linearised operator around the n-kink has no negative or zero eigenvalues, hence
the n-kink is linearly stable. However, for sufficiently large a there are n positive eigenvalues in
the mass gap between zero and the bottom of the continuous spectrum. These positive eigen-
values give rise to internal modes that oscillate harmonically and therefore prevent asymptotic
stability of kinks at the linear level (if a is large enough). Nonetheless, it is expected that the
n-kink is asymptotically stable thanks to the nonlinear resonant damping of internal modes, as
described by Soffer and Weinstein in [15]. In section 4 we use their weakly nonlinear pertur-
bation method to derive the decay rate of the internal mode for the one-kink. Finally, in section
5 we give numerical evidence for the soliton resolution conjecture and verify the predictions
of perturbative computations. As in [8], we solve equation (3) numerically using the hyper-
boloidal formulation of the initial value problem. This approach allows us to reach very long

4 For dimensional reasons the nonlinear term must have the form �−2 sin(2φ), where � is a fixed scale of length.
Hereafter, we set � = 1 by the choice of the unit of length.
5 The φ4 model on the wormhole was considered in [14] following an earlier unpublished version of our paper. The
key difference which makes the φ4 model less interesting than sine-Gordon is that the former is non-integrable already
in flat space. Equation (3) is indeed not integrable for any finite a as it does not possess the Painlevé property.
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times of evolution in a reasonable computational time. In the appendix we give some details
of the computation of parameters of kinks.

2. Kinks

Time-independent solutions φ = φ(r) of equation (3) satisfy the ordinary differential equation

φ′′ +
2r

r2 + a2
φ′ − sin(2φ) = 0. (6)

This equation can be viewed as the equation of motion, with ‘time’ r, for the unit mass par-
ticle moving in the potential −sin2 φ and subject to friction with the time-dependent friction
coefficient 2r

r2+a2 . The solution of degree n corresponds to the trajectory whose projection on

the phase plane (φ,φ
′
) starts from the saddle point (0, 0) at r = −∞ and goes to the saddle

point (nπ, 0) for r = +∞. The existence and uniqueness of such a connecting trajectory for
each n follows from an elementary shooting argument. For example, let the particle be located
at φ = π/2 for r = 0. If the velocity b = φ′(0) is too small, then the particle will never reach
the hilltop at φ = π, while if b is sufficiently large it will roll over the hilltop. By continuity,
there must be a critical velocity b1 for which the particle reaches the hilltop in infinite time
(obviously, by the uniqueness of trajectories, the particle cannot stop at the hilltop in finite
time). Due to reflection symmetry r →−r, the particle sent backwards in time reaches φ = 0
for r →−∞, giving the desired connecting trajectory with n = 1.6 Repeating this argument for
higher n we get a countable family of unique connecting trajectoriesφn(r) which are symmetric
with respect to the midpoint φ(0) = nπ/2, that is φn(r) + φn(−r) = nπ. Near r = 0

φn(r) =
nπ
2

+ bnr +O(r3), (7)

where the parameter bn uniquely determines the trajectory. For r →∓∞ the leading asymp-
totics are, respectively

φn(r) ∼ −cn

r
e
√

2r and φn(r) ∼ nπ − cn

r
e−

√
2r, (8)

where the parameter cn is determined by bn. In the following, we shall refer to the stationary
solution φn as the n-kink. Figure 2 depicts sample profiles of n-kinks for n = 1, 2. A few values
of the parameters bn and cn are listed in table 1 for different values of a and n. While the numer-
ical computation of the parameters bn is straightforward by means of the shooting method, the
computation of the parameters cn is more difficult because the leading asymptotic behaviour
(8) is only the first term of the asymptotic series which has to be summed to give an accurate
approximation of the solution. The details of this computation are given in the appendix.

Next, we shall derive analytic approximations of the kink solutions for large and small
values of a. These approximations will be used below in the stability analysis of the kink.

Large a approximation: for a = ∞, equation (6) reduces to the static sine-Gordon
equation

φ′′ − sin(2φ) = 0, (9)

6 If 0 < φ(0) < π/2, then by the same shooting argument there exists a velocity φ
′
(0) such that the particle tends to π

as r →∞, however going backwards this particle will overshoot 0 and end up at −π/2 for r →−∞. Thus, there are
no asymmetric kinks.
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Figure 2. Profiles of the n-kinks for n = 1, 2.

Table 1. Parameters bn and cn for three values of a.

a (b1, c1) (b2, c2) (b3, c3)

1 (2.0163, 1.5054) (2.8709, 4.2523) (4.3285, 8.5162)
2 (1.6152, 3.4063) (1.6531, 13.109) (2.7121, 33.218)
3 (1.5123, 5.3885) (1.1993, 26.592) (2.1862, 82.056)

whose unique (modulo translation) soliton solution is the sine-Gordon kink

H(r) = 2 arctan e
√

2r. (10)

Let ε = 1/a 
 1 and write

φ(r) = H(r) + ε2 ψ(r) +O
(
ε4
)
. (11)

Substituting this expansion into equation (6) and collecting terms of order ε2, we obtain

ψ′′ − 2 cos(2H)ψ = −2rH′. (12)

The solution H′ of the homogeneous equation is even, while the right-hand side is odd, hence
the Fredholm solvability condition is satisfied and consequently there is a unique solution that
is odd and decays at ±∞. This solution can be written in closed form (using a polylogarithmic
function) but we refrain from displaying it here because it will not be used below.

We confirmed numerically that the approximation φ1(r) ≈ H(r) + ψ(r)/a2 is very accurate
for sufficiently large a2 (and r2 < a2).

The n-kink for large a can be approximated by a superposition of n well-separated sine-
Gordon kinks. For example, for n = 2 we have

φ2(r) ≈ H(r − R) + H(r + R). (13)

The dependence of the separation parameter R on a can be calculated as follows. Multiplying
equation (6) by φ

′
and integrating from r = 0 to r = ∞, we get

1
2
φ′(0)2 − sin2(φ(0)) =

∫
0

∞ 2r
r2 + a2

φ′2 dr. (14)
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In terms of the mechanical analogy this equation represents the balance between the initial
energy of the fictitious particle and the energy lost by friction. Substituting (13) into (14) and
assuming that R and a are large, we get at the leading order 16e−2

√
2R = γ/a2, where γ is a

constant. Thus,

R ≈ 1√
2

ln(a) for a � 1. (15)

Similar large-a approximations can be given for n-kinks with larger n.
Small a approximation: changing variables to ρ = r/a and g(ρ) = φ(r), and taking the

limit a → 0, we get the linear equation

d2 g
dρ2

+
2ρ

ρ2 + 1
dg
dρ

= 0, (16)

whose two linearly independent solutions are g1 = 1 and g2 = arctan ρ. Thus, for a 
 1 the
n-kink is approximated by

φn(r) ≈ n
(π

2
+ arctan

(
r/a

))
. (17)

3. Linear perturbations

In this section we analyse linear stability of kinks φn(r). Let

φ(t, r) = φn(r) + (r2 + a2)−1/2u(t, r), (18)

where the perturbation u is assumed to be small. Plugging this into equation (3), dropping
nonlinear terms in u, and assuming harmonic time dependence u(t, r) = e−iωtv(r), we get the
eigenvalue problem for the one-dimensional Schrödinger operator

Lnv ≡
(
− d2

dr2
+ 2 + Vn(r)

)
v = ω2v (19)

with the potential

Vn(r) = −4 sin2φn(r) +
a2

(r2 + a2)2
. (20)

Let us first consider the case n = 1. As discussed above, in this case the one-kink φ1(r)
tends for a →∞ to the sine-Gordon kink H(r) given by (10) for which the corresponding
linear stability operator is

L = − d2

dr2
+ 2–4 sin2H(r) = − d2

dr2
+ 2 − 4

cosh2(
√

2r)
. (21)

This operator has a continuous spectrum ω2 � 2 (the bottom ω2 = 2 is a resonance) and a
single eigenvalue ω2 = 0 which is due to translation symmetry of the sine-Gordon equation;
the associated normalised eigenfunction (zero mode) is given by

v0(r) = 2−3/4H′(r) =
2−1/4

cosh(
√

2r)
. (22)
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The absence of eigenvalues in the gap (0, 2) is believed to be intimately tied with the complete
integrability of the sine-Gordon equation [16].

The operator L1 can be viewed as a compact perturbation of L so it has the same continuous
spectrum ω2 � 2 but the discrete spectra are different. We claim that L1 > L. To show this,
let us observe that φ1(r) > H(r) for r > 0 (and by the reflection symmetry 0 < φ1(r) < H(r)
for r < 0). This fact is evident within our mechanical analogy because the fictitious particle
corresponding to φ1 is subject to friction while the one corresponding to H moves without
friction. To see this, note that φ1(0) = H(0) = π/2 and φ′

1(0) > H′(0), hence φ1(r) > H(r) for
small r > 0. In fact, this inequality holds for all r > 0 because the H-particle cannot overtake
the φ1-particle (since at the overtake point the φ1-particle would have smaller kinetic energy
than the H-particle and could not reach the hilltop). Since−sin2φ is decreasing forφ ∈ [0, π/2]
and increasing for φ ∈ [π/2, π], it follows that −sin2φ1(r) > −sin2H(r) for all r which by (19)
and (21) implies that L1 > L. Since L has exactly one eigenvalue at ω2 = 0, it follows (see, e.g.
corollary 4.11 on page 119 in [17]) that L1 has no negative eigenvalues and at most one positive
eigenvalue in the gap (0, 2).

To obtain a more quantitative information about the gap eigenvalue of L1 for large values
of a we seek a perturbative solution of the eigenvalue problem (19) in the form

v = v0 + ε2v1 +O
(
ε4
)

, ω2 = c ε2 +O
(
ε4
)

, (23)

where ε = 1/a 
 1. Inserting (11) and (23) into (19), at the zero order we obtain Lv0 = 0,
while at the order ε2 we get

Lv1 = cv0 + 2rv0
′ + 4 sin(2H)ψv0.

The right-hand side must be orthogonal to v0 which yields

c = 1 − 4
∫ ∞

−∞
sin(2H(r))ψ(r)v0(r)2dr. (24)

To calculate the above integral we differentiate equation (12)

Lψ′ = 4 sin(2H)H′ ψ + 2(rH′)′. (25)

Taking the inner product with v0 and integrating by parts we get

4
∫ ∞

−∞
sin(2H(r))ψ(r)v0(r)2 dr = −

∫ ∞

−∞
v0(r)2 dr = −1. (26)

Substituting this into (24) we obtain c = 2.
As a decreases, the potential well gets shallower and eventually becomes a barrier, as fol-

lows from the small-a approximation of kinks (17); see figure 3. Accordingly, as shown in
figure 4, the eigenvalue ω2 migrates through the gap (0, 2) and disappears into the continuous
spectrum for a smaller than some critical value a∗ (for a = a∗ there is a resonance at the bottom
of the continuous spectrum)7. Numerically, we find that a∗ ≈ 0.536.

For a given n � 2 and sufficiently large a, it follows from the large-a approximation of
n-kinks that the potential has the form of n wells equally separated by the distance ∝ ln(a).
Consequently, if a is large enough there are n gap eigenvalues

0 < ω2
1 < · · · < ω2

n < 2.

7 A similar behaviour of the gap eigenvalue was found for some geometric wave equations on the hyperbolic space
[18].
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Figure 3. The potential Vn(r) for n = 1, 2 and two values of a.

Figure 4. The frequency of the internal mode of the one-kink as a function of 1/a.

As a decreases, the potential wells go up (see figure 3) and the gap eigenvalues disappear one by
one into the continuous spectrum at certain critical values a∗

1 < a∗
2 < · · · < a∗

n. For example,
for n = 2 we find numerically a∗

1 ≈ 0.39 and a∗
2 ≈ 0.81.

4. Weakly nonlinear dynamics near the one-kink

In this section we study solutions of equation (3) for initial data near the kink φ1. In terms of
u(t, r) defined in (18), equation (3) takes the form

ü + L1u = f (u, r), (27)

where the linear operator L1 is defined in (19) and the nonlinear term

f (u, r) =
√

r2 + a2

[
sin(2φ1) − sin

(
2φ1 +

2u√
r2 + a2

)]
+ 2 cos(2φ1)u

(28)
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is real-analytic in u and r (in what follows we suppress the dependence of f on r). The Taylor
series of f (u) starts from the quadratic term:

f (u) =
2 sin(2φ1)√

r2 + a2
u2 +

4 cos(2φ1)
2(r2 + a2)

u3 +O(u4). (29)

As follows from (8), the coefficients in this expansion are decaying functions (exponentially
for even powers of u and algebraically for odd powers), which means that the nonlinear terms
are spatially localised. This property, intimately related to the fact that our equation descends
from higher dimensions, will play an important role in our analysis8.

We recall from the previous section that for a < a∗ the spectrum of the operator L1 is purely
continuous. In this case, the nonlinear term f (u), due to its strong spatial localisation, does not
affect the leading order asymptotic behaviour of small amplitude solutions. Consequently, such
solutions decay as t−3/2 for t →∞, which is the three-dimensional free linear dispersive decay
or, equivalently, the one-dimensional linear dispersive decay in the presence of the rapidly
decreasing potential (which has no bound states nor a resonance at the bottom of the continuous
spectrum) [21, 22].

For the rest of this section we shall focus on the more interesting case a > a∗ where

spec(L1) = {ω2} ∪ [2,+∞), 0 < ω2 < 2.

In what follows, the normalised eigenfunction associated to the eigenvalue ω2 is denoted by v,
while the modes of the continuous spectrum are denoted by η. We decompose the solution as
the orthogonal sum of the discrete and continuum modes of L1

u(t, r) = α(t)v(r) + η(t, r), where 〈v, η〉 = 0. (30)

Substituting this decomposition into (27) and projecting on the discrete and continuous
components, using the projection operators P f = 〈v, f 〉v and P⊥ f = f − 〈v, f 〉v (where
〈v, f 〉 :=

∫ +∞
−∞ v̄(r) f (r)dr), we get a system

α̈+ ω2α = 〈v, f (αv + η)〉, (31)

η̈ + L1η = P⊥ f (αv + η). (32)

This system describes interaction between the internal mode and radiation. When the non-
linearity is ‘switched off’, equations (31) and (32) decouple and the internal mode performs
harmonic oscillations with frequencyω. If the perturbation u is small, the system is weakly cou-
pled and the energy is slowly transferred from the internal mode to the continuum modes and
then disperses to infinity. As the result, the amplitude of the internal mode decays asymptoti-
cally to zero and the solution converges (on any compact spatial interval) to the static solution
φ1. The key mechanism of this relaxation process is the nonlinear resonance between the inter-
nal mode and the continuum. It was first described rigorously by Soffer and Weinstein in a
seminal paper [15] (see also [23] for a formal construction, [24, 25] for ramifications, and [26]
for a recent review). Below we will adapt their approach to our case, however in contrast to
[15] we will not justify our formal calculations by error estimates (which would be quite tech-
nical). Instead, to feel confident that the results are true, in the next section we will verify them
by numerical computations.

8 We point out that the lack of spatial localisation of nonlinear interactions is one of the major difficulties in the studies
of asymptotic stability of topological solitons in one spatial dimension, see [3, 19, 20].
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It is convenient to use the complex variable z = α+ i
ω α̇ and rewrite equation (31) as the

first-order ordinary differential equation

ż + iωz =
i
ω
〈v, f

(
1
2

(z + z̄)v + η

)
〉. (33)

We expand the nonlinearity in the formal power series in z, z̄ and η

f

(
1
2

(z + z̄)v + η

)
=

∑
k+l+m�2

f mklη
mzkz̄l, (34)

where indices run over nonnegative integers. The coefficients f mkl(r) are symmetric in the last
two indices and can be read off from the Taylor series (29). Substituting this expansion into
equations (33) and (32) we arrive at the system

ż + iωz =
i
ω

∑
k+l+m�2

〈 f mklη
m, v〉 zkz̄l, (35)

η̈ + L1η =
∑

k+l+m�2

P⊥( f mklη
m) zkz̄l. (36)

In the following we introduce the symbol Op(z, η) defined by

∑
k+l+m�2

cmklη
mzkz̄l = Op(z, η) if min{k + l + 2m|cmkl �= 0} = p, (37)

which incorporates a heuristic rule of thumb (to be justified a posteriori) that η = O(z2). With
this notation, those terms on the right-hand sides of equations (35) and (36) that do not involve
η are of the order O2, while those that involve η are of the order O3.

Next, we make a near-identity coordinate transformation

η = η̃ +
∑

k+l�2

aklz
kz̄l, (38)

where the coefficients akl (which are symmetric) are functions of r. The purpose of this trans-
formation is to eliminate the terms of order O2 on the right-hand side of equation (36). As
we will see shortly, this change of variables is formal in the sense that, although a priori η is
decaying in space, the functions akl in general do not decay. To justify rigorously the procedure
described below one can consider (27) in weighted spaces consistent with (18), cf [22] or in the
energy space following the arguments in [28–30]. A heuristic reason why the procedure works
in the first place is that the system governing the dynamics of the internal modes is always
localised by the projection on the eigenspace.

Substituting (38) into (36) we get

¨̃η + L1η̃ +
∑

k+l=2

(L1 − ω2(k − l)2)aklz
kz̄l =

∑
k+l=2

P⊥ f 0klz
kz̄l +O3. (39)

If we manage to remove the O2 terms then formally η̃ = O3. To do so we impose the condition

(
L1 − (k − l)2ω2

)
akl = P⊥ f 0kl, k + l = 2. (40)
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For the combination of indices (k, l) = (1, 1), there is a unique real-valued solution a11(r) that
decays for |r| →∞. We do not write it down because the only thing that matters is that this
solution is real valued. For the combination (k, l) = (2, 0) we need to consider two cases: (i)
4ω2 > 2 and (ii) 4ω2 < 2 (we omit the nongeneric case 4ω2 = 2 which is more involved). We
postpone the analysis of the case (ii) until afterwards and now we focus on the case (i). In
this case, the frequency 2ω lies in the continuous spectrum of L1 and therefore solutions of
the homogeneous equation (L1 − 4ω2)a = 0 are oscillatory at infinity. Among them there is a
unique (complex) solution a20(r) that satisfies the outgoing boundary conditions for |r| →∞.
Using the method of variation of parameters, this solution can be expressed in the form

a20(r) =
i

2ξ
k(r)

r∫
−∞

k̄(s)P⊥ f 020(s)ds +
i

2ξ
k̄(r)

∞∫
r

k(s)P⊥ f 020(s)ds, (41)

where ξ =
√

4ω2 − 2 and k(r) is the solution of the homogeneous equation satisfying the
following outgoing boundary condition at +∞

k(r) = eiξrm(r), lim
r→∞

m(r) = 1, (42)

and k̄(r) satisfies the corresponding outgoing boundary condition at −∞. In (41) we used the
Wronskian

W[k(r), k̄(r)] := k(r)k̄′(r) − k̄(r)k′(r) = −2iξ, (43)

which follows from (42) and the fact that k̄(r) = k(−r) (what in turn follows from invariance
of L1 under reflections r →−r).

Substituting (38) into (35) and using η̃ = O3, we get

ż + iωz =
i
ω

∑
2�k+l�3

〈v, f 0kl〉zkz̄l +
i
ω

∑
k+l=1
p+q=2

〈v, f 1klapq〉zk+pz̄l+q +O4. (44)

The key point is that all the dependence on η̃ on the right-hand side is contained in the term O4,
hence up to the third order this equation is decoupled from the radiation equation. To factor out
fast oscillations with frequency ω we let z = e−iωtZ. Substituting this into (44) and dropping
all nonresonant terms9 i.e. terms involving powers of eiωt (because such terms time-average to
zero), we finally obtain the third order resonant approximation for t > 010

Ż =
i
ω

(
〈v, f 021〉+ 〈v, f 110a11〉+ 〈v, f 110a20〉

)
Z2Z̄. (45)

The first two terms in the bracket are real, hence multiplying (45) by Z̄ and taking the real part
we get

d
dt
|Z|2 = −Γ|Z|4, where Γ =

2
ω
〈v, f 110 Im(a20)〉. (46)

9 A rigorous justification of this procedure, also called normal form transformation, can be found in [27].
10 We point out that equation (45) is not invariant under the time reversal t →−t. The arrow of time was selected by
the outgoing boundary conditions imposed on a20.
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The coefficient Γ can be calculated as follows. From (29) and (30) we find

f 110 =
2 sin(2φ1)√

r2 + a2
v and f 020 =

sin(2φ1)

2
√

r2 + a2
v2 =

1
4

f 110v. (47)

Since f 020(r) is an odd function while v(r) is even, it follows that P⊥ f 020 = f 020, and from
(41) we get

Im(a20) =
1
2ξ

Re

⎛
⎝k(r)

∞∫
−∞

k̄(s) f 020(s)ds

⎞
⎠ . (48)

Inserting this expression into formula (46) and using (47), we finally obtain

Γ =
1
ξω

∣∣∣∣
〈

k,
sin(2φ1)v2

√
r2 + a2

〉∣∣∣∣
2

, (49)

hence Γ � 0. Generically Γ is strictly positive11 and then equation (46) gives

|Z| ∼ Γ− 1
2 t−

1
2 as t →∞. (50)

The purely imaginary terms on the right-hand side of equation (45) determine the phase of Z.
Returning to the amplitude α = 1

2

(
e−iωtZ + eiωtZ̄

)
, we get the asymptotic behaviour

α(t) ∼ Γ− 1
2 t−

1
2 cos (ωt + θ(t)) , where θ(t) = O(ln t), (51)

hence as the amplitude of the internal mode decays asymptotically to zero, its frequency tends
to the linear frequency ω (in other words, no frequency shift or ‘memory’ effect occurs).

Now, we return to the case (ii) 4ω2 < 2. In this case the frequency 2ω generated by the
quadratic term is below the continuous spectrum so there is no resonant damping present at the
third perturbative order (technically, in this case the solution a20 of equation (40) is real and
therefore the right-hand side of equation (45) is purely imaginary). One needs to go to higher
orders to see the damping. Let N be a positive integer such that

N2ω2 < 2 < (N + 1)2ω2, (52)

hence (N + 1)ω is the lowest multiple of the frequency ω that lies in the continuous spectrum.
The case (i) discussed above corresponds to N = 1. For N � 2 we iterate the near-identity
transformation (38) N times to eliminate terms of order N + 1 in the radiation equation. As the
result of this iteration, the internal mode equation decouples from radiation up to order O2N+1.
By the same reasoning as above, this yields the resonant approximation of order O2N+1 for the
internal mode equation

Ż =
∑

1�l<N

clZ
l+1Z̄l + cNZN+1Z̄N , (53)

where the coefficients cl with l < N are purely imaginary, while Re(cN) � 0. Thus,

d
dt
|Z|2 = 2 Re(cN)|Z|2N+2, (54)

11 This genericity condition is sometimes referred to as the Fermi golden rule [15, 31], which goes back to Dirac’s
theory of radiation in quantum mechanics [32].
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which gives (assuming that Re(cN) is strictly negative) for t →∞

|Z| ∼ CNt−
1

2N , where CN =
(
2N|Re(cN)|

)− 1
2N . (55)

Assuming that the coefficient c1 in (53) is nonzero, the amplitude of the internal mode behaves
asymptotically as

α(t) ∼ CNt−
1

2N cos (ωt + θ(t)) , where θ(t) = O
(

t
N−1

N

)
. (56)

Having the formulae for α(t), we now return to the radiation field η(t, r). The asymptotic
behaviour of η(t, r) for t →∞ is determined by the quadratic term in equation (36), hence to
the leading order we have

η̈ + L1η � P⊥ (
α2 f 2v

2 + 2α f 2vη + f 2η
2
)

, (57)

where f 2 =
2 sin(2φ1)√

r2+a2
is the coefficient of the quadratic term in (29). All terms on the right-hand

side are exponentially localised in space and the dominant contribution comes from the first
term which behaves as α2. Inserting α(t) ∼ t−1/2N and noting that the solution of the homoge-
neous equation decays as t−3/2 [22], we conclude that η(t, r) ∼ t−1/N. This heuristic argument
justifies a posteriori that η = O(z2), as claimed above.

5. Numerical evidence

In this section we solve equation (3) numerically using the hyperboloidal formulation of the
initial value problem [33]. As in [8] we define new coordinates

s =
t
a
−
√

r2

a2
+ 1, y = arctan

( r
a

)
. (58)

The hypersurfaces of constant s are ‘hyperboloidal’, that is they are spacelike hypersurfaces
that approach the ‘left’ and ‘right’ future null infinities of the wormhole spacetime along the
outgoing null cones. In terms of the coordinates (s, y) and h(s, y) = φ(t, r) equation (3) takes
the form

∂2
s h + 2 sin y∂s∂yh +

1 + sin2 y
cos y

∂sh = cos2y∂2
y h − a2 sin(2h)

cos2 y
. (59)

We solve this equation for smooth initial data of degree n

h(0, y) = α(y), ∂sh(0, y) = β(y), (60)

where the functions α(y) and β(y) tend exponentially to α(− π
2 ) = 0, α( π2 ) = nπ and

β(± π
2 ) = 0. In this formulation, the n-kink denoted by hn(y) satisfies the boundary conditions

hn(− π
2 ) = 0, hn( π2 ) = nπ. No boundary conditions are imposed because the principal part of

equation (59) degenerates to ∂s(∂s ± 2∂y)h at the endpoints y = ±π/2, hence there are no
ingoing characteristics at the boundaries12.

12 We remark that for massless fields considered in [8] there was an outflow of energy defined on hyperboloidal
slices through the boundaries due the outgoing radiation. In the case at hand, the boundaries do not participate in
the evolution, and hence the energy is conserved, because the group velocity of waves is strictly less than one.
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Figure 5. The snapshots of h(s, y) for the initial data (63). The solution converges to the
one-kink h1(y) (solid black line) in an oscillatory manner.

Following [8, 33] we define the auxiliary variables

q = ∂yh and p = ∂sh + sin y∂yh,

and rewrite equation (59) as the first order symmetric hyperbolic system

∂sh = p− q sin y, (61a)

∂sq = ∂y (p− q sin y) , (61b)

∂s p = ∂y (q − p sin y) + 2 tan y (q − p sin y) − a2 sin(2h)
cos2 y

. (61c)

The initial data (60) translate to

h(0, y) = α(y), q(0, y) = α′(y), p(0, y) = β(y) + sin yα′(y). (62)

We solve this system numerically using the method of lines with a fourth-order Runge–Kutta
time integration and eighth-order spatial finite differences. One-sided stencils are used at the
boundaries. Kreiss–Oliger dissipation is added in the interior in order to reduce unphysical
high-frequency noise. To suppress violation of the constraint q − ∂yh = 0, we add the term
ε(q − ∂yh) with a small negative ε to the right-hand side of equation (61b).

For any initial data of degree n, we find that the solution h(s, y) converges pointwise to the
n-kink hn(y) as s →∞. In the following, we focus on solutions of degree one and illustrate the
results of numerical computations for sample initial data of the form (figure 5)

α(y) = h1(y) + e−
1
4 tan2 y, β(y) = 0. (63)

The convergence rates for several values of a are depicted in figure 6.
The results are in accord with the formulae (51) and (56) for the decay of the internal mode,

and verify the decay rate s−3/2 when the internal mode is absent. We emphasise that both the
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Figure 6. Amplitudes of perturbations evaluated at y = 0 in the evolution of initial data
(63) for different values of the wormhole radius: a = 0.25 (no gap eigenvalue) and a = 1
(ω = 1.0682), a = 2 (ω = 0.6345), a = 3 (ω = 0.4455), corresponding to N = 1, 2, 3
in (52), respectively. The red dashed lines depict analytic predictions with empirically
fitted coefficients.

Figure 7. The effective frequency (left panel) and the amplitude (right panel) in the evo-
lution of initial data (63) for a = 1.65. The late-time small oscillations of the frequency
are believed to be due to nonresonant interactions.

decay rates and the coefficients are universal (i.e. independent of initial data). In the N = 1
case the coefficient 2.79 obtained from the empirical fit agrees (to three decimal places) with
Γ−1/2 calculated from formula (49). This excellent quantitative agreement between analytic
and numerical results makes us feel confident that both computations are correct.

For the evolutions depicted in figure 6 the frequencies of internal modes are well separated
from the threshold values

√
2/(N + 1). If the frequency of the internal mode is near a thresh-

old value, an intermediate dynamics is more complicated. This is illustrated in figure 7 where
we plot the effective frequency ω(s) (computed from the distances of subsequent maxima of
oscillations) and amplitude of perturbation for a = 1.65 for which ω = 0.7422 is a little above
the N = 1 threshold value

√
2/2 ≈ 0.7071. Initially, the effective frequency is below

√
2/2

and the amplitude decays approximately as s−1/4 (as in the N = 2 case). For later times, the
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effective frequency increases above the threshold and concurrently the decay rate of the
amplitude undergoes a transition to the asymptotic rate s−1/2 (N = 1 case).

To summarise, the sine-Gordon equation on the wormhole is a rich model for developing
understanding of the asymptotic stability of topological solitons with internal modes. In this
work we focused mainly on dynamics of perturbations of the one-kink. It would be interesting
to generalise the weakly nonlinear perturbation analysis from section 4 to n-kinks with multiple
internal modes. We leave this to future work.
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Appendix

We describe here how we computed the coefficients cn in the asymptotic expansion (8). Since
the solutions φn(r) of equation (6) are symmetric, it is sufficient to consider the asymptotic
behaviour at one end, say r →∞

nπ − φn(r) ∼ cn

r
e−

√
2r. (64)

Let us observe that for large values of r we have

nπ − φn(r) = cnφL(r) +O(e−3
√

2r), (65)

where φL(r) is the solution of the linearised equation

φ′′
L +

2r
r2 + a2

φ′
L − 2φL = 0, (66)

such that

φL(r) ∼ 1
r

e−
√

2r for r →∞. (67)

Equation (66) has two regular singular points r = ±ai and the irregular singularity at r = ∞
and the general solution can be expressed in terms of confluent Heun functions [34]

φL = C1 HeunC
(
0,−α, 0, γ, δ,−r2/a2

)
+ C2 HeunC

(
0,α, 0, γ, δ,−r2/a2

)
,

(68)

where α = 1
2 , γ = 1

2 a2, δ = − 1
2 a2 + 1

4 . In order to find the coefficients C1 and C2 such that
φL satisfies (67) we proceed in two steps. In the first step, we temporarily set C1 = 1 and
determine C2 numerically by solving the equation φL(r) = 0 for some large value of r, say
r = 60. This computation has to be performed with very high precision (up to 60 decimal
places) which is possible in Maple where the Heun functions are tabulated. Having that, in the
second step, we compute numerically the limit β = limr→∞ re

√
2rφL(r). This is done by evalu-

ating r je
√

2r jφL(r j) for an increasing series of r j (say from r1 = 20 to r10 = 30) and using the
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Shanks transformation to accelerate the convergence. Rescaling the coefficients Ck �→ Ck/β
we get the solution φL(r) satisfying (67). Finally, taking the numerical solution φn(r) obtained
by the shooting method we compute the coefficients cn using the formula

cn ≈ nπ − φn(r0)
φL(r0)

, (69)

where r0 is small enough, say r0 = 6, so that the value φn(r0) is accurate.
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Laurent Schwartz-EDP et applications (2016–2017) vol 18 p 27
[4] Eckhaus W and Schuur P 1983 The emergence of solitons of the Korteweg–de vries equation from

arbitrary initial conditions Math. Methods Appl. Sci. 5 97–116
[5] Schuur P C 1986 Asymptotic Analysis of Soliton Problems (An Inverse Scattering Approach) Lecture

Notes in Mathematics vol 1232 (Berlin: Springer)
[6] Duyckaerts T, Kenig C and Merle F 2013 Classification of the radial solutions of the focusing,

energy-critical wave equation Camb. J. Math. 1 75–144
[7] Kenig C, Lawrie A, Liu B and Schlag W 2015 Stable soliton resolution for exterior wave maps in

all equivariance classes Adv. Math. 285 235–300
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