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for consistency that the product Λc2 tends to a negative constant as c→∞, we show that
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potential which we call the Schrödinger-Newton-Hooke (SNH) system. We then derive
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1 Introduction

Numerical and perturbative studies of dynamics of small perturbations of the Anti-de Sit-

ter (AdS) spacetime in [1] have led to a conjecture that the AdS spacetime is nonlinearly

unstable, with black hole formation in the evolution of arbitrarily small generic pertur-

bations. While significant further evidence has been accumulated for this conjecture in

subsequent works, the regime of very small perturbations is not accessible numerically,

which necessitates the development of exact or asymptotic analytic methods. The only

rigorous result that we are aware of is the proof of instability of AdS within the spherically

symmetric massless Einstein-Vlasov model with negative cosmological constant announced

in [2] (see also [3]). However, the argument in [2] relies heavily on the fact that matter

moves along null geodesics and it is not clear a priori whether a similar approach can be

applied to other Einstein-matter or vacuum Einstein equations.

Another strategy, taken here, is based on the resonant approximation developed and

applied in [4–9] under a number of different names (two-time framework, renormalization

flow, time-averaging). Within this approximation, the dynamics of small perturbations

of AdS is described by an infinite dimensional cubic dynamical system for the normal

mode amplitudes. In this representation, the magnitude of perturbations in the original

system is completely scaled out, thereby giving access to the regime of arbitrarily small

perturbations. Numerical analysis [7] of the resonant approximation for the Einstein-scalar

system in 4 + 1 dimensions with negative cosmological constant provided further evidence

that the instability of AdS is triggered by a turbulent transfer of energy to short wavelength

modes, as conjectured in [1].

Even though the resonant approximation provides an attractive window into extremely

small amplitude regime of AdS perturbations, it is still forbiddingly complicated for analytic
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purposes. This is ultimately traced back to the complexity of nonlinearities in Einstein’s

equations. The coefficients of the resonant system are complicated expressions in terms of

integrals of the AdS mode functions [5, 6], and in special cases where these integrals have

been evaluated [8], the expressions are so long that they could not even be included in a

published article. In such circumstances, it seems wise to look at simpler related systems.

Most pragmatically, understanding general features of resonant systems may lead to qual-

itative results that will shed light on the dynamics of AdS perturbations irrespectively of

the detailed algebraic expressions for the coefficients in the corresponding resonant system.

More broadly, this point of view connects weakly nonlinear dynamics of asymptotically

AdS spacetimes to many other interesting studies of weakly nonlinear energy transfer in

spatially confined systems, often motivated by completely different physics.

Perhaps the most straightforward modification of the dynamics of asymptotically AdS

spacetimes is turning off the gravitational backreaction and studying nonlinear matter

fields on a fixed AdS background [10–14]. While this is a very different physical setting,

the corresponding resonant approximation has an identical structure but with much sim-

pler coefficients in the equations. Finite-time turbulent blow-ups are no longer seen but

the dynamics is still characterized by a sequence of direct cascades of energy to shorter

wavelength modes, followed by inverse cascades. Some of such resonant systems originating

from nonlinear wave equations in AdS can be treated analytically with a number of explicit

results [11–14]. (These systems show some similarities to the cubic Szegő equation designed

and studied in a series of works by Gérard and Grellier starting from [15]. Remarkably,

the cubic Szegő equation exhibits weak turbulence even though it is integrable.)

There is a deep similarity between nonlinear wave equations in AdS and the Gross-

Pitaevskii equation describing Bose-Einstein condensates in harmonic traps (the latter

system is nowadays routinely realized experimentally in terrestrial laboratories). This sim-

ilarity has been emphasized at a practical level in [16], and explained in [13] through the

emergence of the Gross-Pitaevskii equation as the nonrelativistic limit1 of the cubic wave

equation in AdS. Through this connection, a number of interesting parallels have been ob-

served between the resonant systems for AdS wave equations and the Gross-Pitaevskii equa-

tions, and the corresponding exact analytic solutions in weakly nonlinear regimes [22–27].

Given the above connections (interesting in both physical and mathematical terms)

that emerge from taking a nonrelativistic limit of nonlinear wave equations in AdS, a ques-

tion arises: what if one takes a similar nonrelativistic limit in the original AdS instability

setup, with the full gravitational backreaction of the scalar field included? This is the

main question we shall be addressing in this article. We recall that the corresponding

nonrelativistic limit of the Einstein-massive-scalar system with zero cosmological constant

(i.e., for asymptotically flat rather than asymptotically AdS spacetimes), resulting in the

Schrödinger-Newton (SN) equation for a self-gravitating wavefunction, has been considered

in various physical contexts,2 for example in modelling boson stars [29, 30] or in attempts

1At the level of the corresponding symmetry groups, rather than at the level of the equtions of motion,

this relation has appeared in the literature a number of times [17–21].
2Outside gravitational physics, the SN equation occurs (under the names of the Hartree, Schrödinger-

Poisson or Choquard equation) as a mean-field approximation for many-body problems; see [28] for a review.
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to envisage the wave function collapse as a gravitational phenomenon [31, 32]. It has also

been extensively studied in the mathematical literature (see, e.g., [33, 34]).

In the presence of a negative cosmological constant Λ, an important observation is that

consistency of the nonrelativistic limit requires the product Λc2 to approach a negative

constant as c → ∞. Under this assumption, we show that the nonrelativistic limit is

given by the SN system with an external harmonic potential. Thus, the confinement of

waves in asymptotically AdS spacetimes due to the gravitational potential translates in

the nonrelativistic limit to the trapping by the harmonic potential. We call this system

the Schrödinger-Newton-Hooke (SNH) equation following the tongue-in-cheek terminology

for the Newton-Hooke groups in the literature on kinematic symmetries [20, 21]. Although

the SNH system has been studied in the literature (see, e.g., [35, 36]), we believe it is the

first time it appears in connection with a negative cosmological constant.

The paper is organized as follows. In section 2, we derive the SNH system as the

nonrelativistic limit of the Einstein-massive-scalar system with a negative cosmological

constant and discuss its basic properties. We point out that in four spatial dimensions the

SNH system enjoys a symmetry enhancement analogous to the symmetry enhancement for

the Gross-Pitaevskii equation in two spatial dimensions [37, 38]. In section 3, we construct

the resonant system which approximates the small amplitude regime of the SNH equation.

In section 4, we study this resonant system and prove that in four spatial dimensions it

belongs to a large class of analytically tractable resonant systems developed in [27]. This

automatically gives exact special analytic solutions, bounds on turbulent energy transfer

for these special solutions, and an extra conserved quantity. We conclude with a discussion

of the SNH system in higher dimensions.

2 The SNH model

We consider a massive self-gravitating scalar field φ in d+ 1 dimensions (for d ≥ 3) in the

presence of negative cosmological constant Λ. The system is governed by the Klein-Gordon

equation

gµν∇µ∇νφ−
m2c2

~2
φ = 0, (2.1)

and the Einstein equations

Gµν + Λgµν =
8πG

c4
Tµν (2.2)

with the stress-energy tensor

Tµν =
~2

2m

[
∂µφ∂ν φ̄+ ∂µφ̄∂νφ− gµν

(
∂λφ∂

λφ̄+
m2c2

~2
|φ|2

)]
. (2.3)

To derive a nonrelativistic limit,3 we assume the following weak-field ansatz for the leading

order behavior (in powers of 1/c) of the scalar field and the metric (hereafter x ∈ Rd):

φ(t, x) = e−
imc2

~ t u(t, x) , (2.4)

3The nonrelativistic limit for the Einstein-scalar system in four spacetime dimensions without cosmo-

logical constant was examined in details in [39] under the assumption of spherical symmetry (see also [40]

for the case with positive cosmological constant).
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and

ds2 = −c2
(

1 +
2A(t, x)

c2

)
dt2 +

(
1 +

2B(t, x)

c2

) d∑
j=1

(dxj)2 . (2.5)

Note that in the ansatz (2.5) we have included the first post-Newtonian correction to the

spatial part of the metric which at this order in 1/c expansion is isotropic; see [41, sections

39.7-8] for a textbook treatment of a similar nonrelativistic limit without a cosmological

constant in 3 + 1 dimensions. We insert this ansatz into the field equations and determine

the leading order terms in powers of 1/c. A salient point here is that we must assume for

consistency that Λ→ 0 as c→∞. More precisely, we require that4

lim
c→∞

Λc2 = −d(d− 1)

2
ω2, (2.6)

where ω is a constant. The Klein-Gordon equation (2.1) gives for c→∞

i~ ∂tu = − ~2

2m
∆u+mAu , (2.7)

where ∆ =
∑d

j=1 ∂
2
j .

The tt-component of the Einstein equations gives for c→∞

− (d− 1)∆B +
d(d− 1)

2
ω2 = 8πGm|u|2, (2.8)

while the jj-component multiplied by c2 gives

∆A− ∂2jA+ (d− 2)(∆B − ∂2jB)− d(d− 1)

2
ω2 = 0. (2.9)

Summing this up over j and using (2.8) we get

∆A =
8πG(d− 2)

d− 1
|u|2 + ω2d . (2.10)

Substituting A = V + 1
2ω

2|x|2 into (2.7) and (2.10), we obtain

i~ ∂tu = − ~2

2m
∆u+

1

2
mω2|x|2u+ V u, (2.11)

∆V =
8πG(d− 2)

d− 1
|u|2 , (2.12)

which we shall call the Schrödinger-Newton-Hooke (SNH) system. The Poisson equa-

tion (2.12) can be solved using the Green function for the Laplace operator

G(x) = − 1

(d− 2)Ωd

1

|x|d−2
, (2.13)

4An explanation for the group-theoretical origin of (2.6) in the context of taking nonrelativistic limits

can be found in [21]. We are grateful to Gary Gibbons for elucidating this point to us.
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where Ωd = 2π
d
2 /Γ(d2) is the volume of Sd−1, to yield

V (t, x) = − 8πGm

(d− 1)Ωd

∫
Rd

|u(t, y|2

|x− y|d−2
dy , (2.14)

which upon substitution into (2.11) gives the Hartree equation with a harmonic potential

i~ ∂tu = − ~2

2m
∆u+

1

2
mω2|x|2u− 8πGm

(d− 1)Ωd

(∫
Rd

|u(t, y)|2

|x− y|d−2

)
u . (2.15)

In this paper we restrict ourselves to spherically symmetric solutions. In this case, the

convolution can be simplified using Newton’s formula∫
Rd

f(|y|)
|x− y|d−2

dy =

∫
Rd

f(|y|)
max{|x|d−2, |y|d−2}

dy = Ωd

∫ ∞
0

f(s)sd−1

max{rd−2, sd−2}
ds . (2.16)

Setting ~ = m = 8πG
d−1 = 1 by a choice of units and using (2.16), at the end we arrive at the

radial Hartree equation with a harmonic potential

i∂tu = −1

2
∆ru+

1

2
ω2r2u−

(∫ ∞
0

|u(t, s)|2sd−1

max{rd−2, sd−2}
ds

)
u , (2.17)

where ∆r = ∂2r + d−1
r ∂r. We shall refer to (2.17) as the SNH equation.

The SNH equation preserves the mass and energy defined as

N [u] =

∫ ∞
0
|u(t, r)|2rd−1dr, (2.18)

H[u] =
1

2

∫ ∞
0
|∂ru(t, r)|2rd−1dr +

1

2
ω2

∫ ∞
0

r2|u(t, r)|2rd−1dr

− 1

4

∫ ∞
0

(∫ ∞
0

|u(t, s)|2sd−1

max{rd−2, sd−2}
ds

)
|u(t, r)|2rd−1dr . (2.19)

We shall now display a connection between the SNH equation (2.17) and the SN

equation, which results from setting ω = 0 in (2.17):

i∂tu = −1

2
∆ru−

(∫ ∞
0

|u(t, s)|2sd−1

max{rd−2, sd−2}
ds

)
u . (2.20)

This equation enjoys the scaling symmetry

u(t, r) 7→ uλ(t, r) := λ2u(λ2t, λr). (2.21)

Under this scaling, the mass and energy corresponding to (2.20) transform as follows

N0[uλ] = λ4−dN0[u], H0[uλ] = λ6−dH0[u], (2.22)

hence the SN equation is mass-critical for d = 4 and energy-critical for d = 6. Although

the scaling symmetry is broken in (2.17) by the harmonic term, these critical dimensions

demarcate different behaviors of solutions of the SNH equation as well. In particular, in
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the mass critical case, there is a direct relation between the SN and SNH equations. To see

this, given a solution u(t, r) of equation (2.20), we define the lens transform  Lu as in [42]:

 Lu(t, r) =
1

cosd/2 ωt
u

(
tanωt

ω
,

r

cosωt

)
e−

i
2
ωr2 tanωt. (2.23)

It can be verified by a direct computation that  Lu satisfies

i∂t  Lu = −1

2
∆r  Lu+

1

2
ω2r2  Lu− cosd−4(ωt)

(∫ ∞
0

| Lu(t, s)|2sd−1

max{rd−2, sd−2}
ds

)
 Lu, (2.24)

which for d = 4 simply reduces to (2.17). Note that  Lu(0, r) = u(0, r), so the lens transform

does not alter the initial data. Thus, solving (2.17) in d = 4 is equivalent to solving (2.20)

for the same initial data, and then applying the lens transform to obtain the desired

solution. This structure evidently implies that all symmetries of (2.20), given by the

Schrödinger group [43] in d = 4 are conjugated to the analogous symmetries of (2.17).

Note, however, that if u(t, r) is a global-in-time solution of (2.20), then  Lu(t, r) is defined

only for |t| < π
2ω and it is a delicate question what happens for later times. The situation

is directly parallel to the Gross-Pitaevskii equation, where both the lens transform [42, 44]

and the underlying conformal symmetry [37, 38] operate in d = 2. Similarly, our subsequent

study of weakly nonlinear dynamics will reveal further strong parallels between the SNH

equation in d = 4 and the Gross-Pitaevskii equation with an isotropic harmonic potential

in d = 2.

The lens transform (2.23) is a nonrelativistic analog of the familiar coordinate and

conformal transformations encountered in AdS spacetimes. Namely, Minkowski spacetime

with the flat metric ds2 = −dt2 + dz2 + dxidxi, whose massive scalar perturbations are

described in the nonrelativistic limit by the SN equation, is conformal to the Poincaré

patch of AdS spacetime with the metric ds2 = (−dt2 + dz2 + dxidxi)/z2. By a standard

change of coordinates, the Poincaré patch is embedded into the global AdS spacetime,

whose massive scalar perturbations are described in the nonrelativistic limit by the SNH

equation. This map between a system with curvature (global AdS) and a system without

curvature (Minkowski) is directly parallel to the removal of the external potential by the

lens transform, while the infinite time range on the Minkowski (or SN) side is mapped to

a finite time range on the global AdS (or SNH) side in both cases.

3 The resonant approximation

We shall now focus on the behavior of small amplitude solutions of the SNH equation. Since

the normal modes of the linearized SNH equation (which is just the linear Schrödinger

equation with a harmonic potential) oscillate with commensurate frequencies, nonlinear

interactions can produce infinitely many resonances between the modes. In this situation,

sometimes referred to as fully resonant, the evolution of solutions with initially arbitrarily

small amplitudes of order ε can lead to large nonlinear effects on timescales of order 1/ε2.

An attractive position space approach to long-time evolution of the nonlinear

Schrödinger equation with harmonic potential has been developed in [45] (see also [36]
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where this approach has been applied to the Hartree equation with harmonic potential).

The key observation is that the evolution of small amplitude solutions is mostly dominated

by the harmonic potential which makes the solution focus near the origin periodically in

time. At the foci, the harmonic potential term is negligible and the passing through each

focus can be described by a certain nonlinear scattering operator. Thus, iterations of this

operator provide a stroboscopic picture of the evolution. Unfortunately, it seems very dif-

ficult to control the iterations in the case of the SNH equation. (A similar approach to

relativistic gravitational perturbations of AdS has been later attempted in [46].)

Here, to take into account the resonant interactions between linearized normal modes

at leading order in ε, we shall employ the resonant approximation. We start by expanding

solutions of (2.17) with amplitudes of order ε in terms of the radial eigenfunctions of the

d-dimensional isotropic harmonic oscillator:

u(t, r) = ε

∞∑
n=0

αn(t)en(r)e−iEnt, (3.1)

where the eigenvalues and normalized eigenfunctions are given by

En =

(
2n+

d

2

)
ω, en(r) = ωd/4

(
2n!

Γ
(
n+ d

2

))1/2

L
( d
2
−1)

n (ωr2)e−ωr
2/2 . (3.2)

Here, L
(m)
n denote the generalized Laguerre polynomials, which can be defined through

their generating function
∞∑
n=0

tnL(α)
n (x) =

e−
tx
1−t

(1− t)α+1
. (3.3)

Substituting (3.1) into (2.17), projecting on en, and using the orthogonality relation∫ ∞
0

en(r)em(r)rd−1dr = δnm,

we get

iα̇n = −ε2
∞∑
j=0

∞∑
k=0

∞∑
l=0

Snjklᾱjαkαle
i(En+Ej−Ek−El)t, (3.4)

where we have defined

Snjkl =

∞∫
0

rdr

∞∫
0

min
{
rd−2, sd−2

}
en(r)ej(s)ek(s)el(r)s ds. (3.5)

We note that αn vary slowly on time scales of order 1/ε2, whereas the terms on the right

hand side of (3.4) with En + Ej − Ek − El 6= 0 oscillate much faster on time scales of

order 1. It is intuitively clear that such oscillatory terms will ‘average out’ for very small

ε, and this can be justified by accurate asymptotic analysis [47, 48]. The essence of the

resonant approximation (or time-averaging) is then in discarding in (3.4) all terms with
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En+Ej−Ek−El 6=0, and only keeping the resonant quartets satisfying En+Ej−Ek−El=0,

which is the same as n + j = k + l. We furthermore redefine −ε2t to be the new ‘slow’

time (whereafter ε completely disappears from the equation). The end result is a new

autonomous resonant system given by

i
dαn
dt

=
∞∑
j=0

n+j∑
k=0

Cnjk,n+j−kᾱjαkαn+j−k, (3.6)

with the interaction coefficients

Cnjkl =
1

2
(Snjkl + Snjlk) . (3.7)

These coefficients enjoy the index permutation symmetries

Cnjkl = Cnjlk = Cjnkl = Cklnj . (3.8)

It follows from (3.2) and (3.5) that Cnjkl = ωd/2−1Cnjkl|ω=1. From now on we will be

assuming that ω = 1, as any other values of ω may be obtained via trivial time rescaling

in (3.6). The integrals defining the interaction coefficients can be evaluated in a closed

form using hypergeometric functions; the explicit expressions are given in appendix A for

completeness but will not be used below.

While we are not constructing here a rigorous proof that the resonant system ap-

proximates the original equation in the appropriate long-time small-amplitude regime, and

limit ourselves to a physical argument, we expect this proof to be within easy reach of

the methods of modern PDE mathematics. For finite-dimensional systems of ODEs, the

proof is in textbooks [47], while many closely related nonlinear Schrödinger equations have

been analyzed by mathematicians, with rigorous proofs of the accuracy of the resonant

approximation [22, 48]. (A very compact summary oriented towards the physics audience

can be found in [26].)

The resonant system (3.6) is Hamiltonian

i
dαn
dt

=
∂H

∂ᾱn
(3.9)

with

H =
1

2

∞∑
n=0

∞∑
j=0

n+j∑
k=0

Cnjk,n+j−kᾱnᾱjαkαn+j−k. (3.10)

Besides the Hamiltonian, the resonant system (3.6) conserves the following two quantities

(corresponding to the total mass carried by the wavefunction u and the total energy of the

linearized theory):

N =
∞∑
n=0

|αn|2, E =
∞∑
n=0

(
n+

d

4

)
|αn|2, (3.11)

which follow by Noether’s theorem from the global and local phase rotation symmetries,

αn 7→ eiφαn and αn 7→ einθαn, respectively. For d = 4, there are additional conservation

laws, as we shall see in the next section.
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4 The resonant system in four spatial dimensions

As the SNH equation enjoys enhanced symmetries in four spatial dimensions, one might

justifiably expect that the resonant system likewise displays special features in this case.

Indeed, we shall now demonstrate that, for d = 4, (3.6) belongs to a class of solvable cubic

resonant systems introduced in [27]. To this end, it suffices to show that the following

linear combination of the interaction coefficients

Dnjkl ≡ (n+ 1)C̃n−1,jkl + (j + 1)C̃n,j−1,kl − (k + 1)C̃nj,k+1,l − (l + 1)C̃njk,l+1 (4.1)

vanishes identically if l+k = n+j−1. Here C̃njkl = 1
2(S̃njkl+S̃njlk), where following [27] we

defined S̃njkl =
√

(n+ 1)(j + 1)(k + 1)(l + 1)Snjkl. From (3.5) and (3.2), we get for d = 4

S̃njkl =

∫ ∞
0

dρ

∫ ∞
0

dσmin{ρ, σ}e−ρ−σL(1)
n (ρ)L

(1)
j (σ)L

(1)
k (σ)L

(1)
l (ρ). (4.2)

The proof that Dnjkl ≡ 0 if l+k = n+ j− 1, relying on identities satisfied by the Laguerre

polynomials, is given in appendix B.

The results of [27] imply that any cubic resonant system of the form (3.6) with the in-

teractions coefficients satisfying the above identity possesses an additional complex-valued

conserved quantity and a three-dimensional invariant manifold on which the dynamics is

completely integrable. More specifically,5 the extra conserved quantity reads

Z =
∞∑
n=0

√
(n+ 1)(n+ 2) ᾱn+1αn, (4.3)

while the invariant manifold is given by the ansatz

αn(t) =
√
n+ 1

(
b(t) +

a(t)

p(t)
n

)
(p(t))n, (4.4)

where a(t), b(t), and p(t) are complex-valued functions of time.

We shall now briefly recapitulate the main points of [27], while referring the reader

to the original publication for detailed derivations. The conservation of (4.3) is shown in

a fairly straightforward manner by differentiating that expression, and then applying the

equations of motion (3.6) and the identity (4.1). Proving that the ansatz (4.4) is compatible

with the equations of motion, on the other hand, requires some extra work. One approach

is to establish the following identities as a consequence of (4.1):

n+j∑
k=0

√
(1 + k)(1 + n+ j − k)

(1 + n)(1 + j)
Cnjk,n+j−k = 1, (4.5)

n+j∑
k=0

k

√
(1 + k)(1 + n+ j − k)

(1 + n)(1 + j)
Cnjk,n+j−k =

1

2
(n+ j), (4.6)

n+j∑
k=0

k

√
(1 + k)(1 + n+ j − k)

(1 + n)(1 + j)
Cnjk,n+j−k =

3

8
(n2 + j2) +

3

8
nj +

1

8
(n+ j). (4.7)

5In the language of [27], the system (3.6) corresponds to G = 2, where G is a parameter labelling the

solvable resonant systems within the large class defined in [27].
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The proof, given in [27], simply analyzes the condition Dnjkl = 0 as a linear finite-difference

equation for the interaction coefficients Cnmkl, and the above identities result from this

analysis. While completely elementary, the proof is somewhat lengthy and we shall refrain

from quoting it here in full, referring the reader to [27].

Once the above identities have been established, one can substitute (4.4) into the

equations of motion (3.6), and the identities (4.5)–(4.7) will allow explicit evaluation of the

sums. Both left-hand side and right-hand side of (4.4) descend in this manner to quadratic

polynomials in n, and equating the coefficients of these polynomials on both sides results

in a consistent set of equations for a(t), b(t) and p(t), which can be written as

iṗ=
1

16
(1+y)2(2|a|2p(y+1)+ab̄), (4.8)

iȧ=
1

16
a(1+y)2(10|a|2(y+1)(3y+1)+20(y+1)Re(ab̄p̄)+4ābp(y+1)+7|b|2), (4.9)

iḃ= ap̄
3

8
(1+y)4

(
2(1+2y)|a|2+ab̄p̄

)
+b(1+y)2

(
(1+y)(1+3y)|a|2+

1

2
|b|2+2(1+y)Re(ābp)

)
, (4.10)

where we have defined y = |p|2/(1 − |p|2). The existence of two conserved quantities in

involution (in addition to the Hamiltonian) given by (3.11) guarantees that this reduced

Hamiltonian system with three degrees of freedom is Liouville-integrable. It is convenient

to reparametrize the conserved quantities in terms of N , E, S =
√

(N2 −H)/6 and Z,

which are given by

N = (1+y)2
(
2(1+y)(1+3y)|a|2+|b|2+4(1+y)Re(ābp)

)
, (4.11)

E= (1+y)2
(
4(1+y)(1+6y+6y2)|a|2+4(1+y)(2+3y)Re(ābp)+(1+2y)|b|2

)
, (4.12)

S=
1

2
|a|2(1+y)4, (4.13)

Z = 2(1+y)3
(
6(1+y)(1+2y)|a|2+6(1+y)Re(ābp)+|b|2

)
p̄+2(1+y)3āb. (4.14)

Using these conservation laws, one may write down a closed equation for p:

iṗ =
1

32(1 + y)

(
Z̄ − (N + E + 4S)p

)
. (4.15)

One further obtains

ẏ2+
1

1024

(
(N−E+4S)2+4(N2−NE−4ES+48S2)y+4(N2+48S2)y2

)
= 0, (4.16)

and then

ẏ2 + ω2(y − y0)2 = E , (4.17)

where

ω =
1

16

√
N2 + 48S2, y0 =

1

2

(
1− E(N + 4S)

N2 + 48S2

)
, E =

S(4S −N)(N2 − E2 + 48S2)

128(N2 + 48S2)
.

– 10 –



J
H
E
P
1
2
(
2
0
1
8
)
1
1
3

The variable y thus performs harmonic oscillator motions of the form

y(t) = A cos(ωt+ φ) + y0, (4.18)

where

A =

√
2S(4S −N)(N2 − E2 + 48S2)

N2 + 48S2
. (4.19)

This implies (as in a number of related physically motivated cases, as well as in the general

considerations of [27]) that |p|2 is exactly periodic in time, and by the conservation laws,

|a|2, |b|2 and Re(ābp) are exactly periodic in time. The same periodicity applies to the

entire spectrum |αn|2 for solutions within our ansatz (4.4). In particular, all two-mode

initial data of the form αn≥2(0) = 0 belong to our ansatz (corresponding to p(0) = 0), and

will hence display periodic exact energy returns to the initial configuration. Such initial

data are often analyzed numerically in the literature on the original relativistic version

of AdS perturbations. (One may, for instance, contrast the exact energy returns we have

proved here for the nonrelativistic limit of AdS5 with the very close but inexact energy

returns seen in the relativistic theory in AdS4 [49].) For solutions within our ansatz, as |p|2

oscillates, the energy is periodically transferred to higher modes, and then it returns to the

lower modes. The range of these oscillations is uniformly bounded by the considerations

of [27], and no turbulent behaviors emerge for solutions within the ansatz (4.4).

We note that no immediate analogs of the structures we displayed above (the conser-

vation of Z, dynamically invariant manifolds, periodic evolution of the energy spectrum)

exist in relativistic AdS gravity. At the same time, systems with relativistic self-interacting

probe fields in AdS backgrounds do display such features [11, 13].

We conclude with a digression that should highlight the special character of the SNH

resonant system in four spatial dimensions. Following [50], one can straightforwardly quan-

tize the Hamiltonian (3.10) by promoting αn and ᾱn to the standard creation-annihilation

operators satisfying [α̂†n, α̂m] = −δnm. This ‘quantum resonant system’ turns out to be

remarkably simple and can be analyzed in great detail. The quantized versions of the

conserved quantities N and E′ := E − dN/4, with N and E given by (3.11), have integer

eigenvalues and the Hamiltonian is block-diagonal with respect to these integer eigenvalues

(the matrix elements of the Hamiltonian between states with different N and E′ vanish).

Each (N,E′)-block furthermore contains a finite number of states and can be diagonalized

by ordinary matrix diagonalizations. Once the energy eigenvalues have been obtained by

this diagonalization, their properties can be analyzed in any desired way. In particular,

statistics of distances between the neighboring eigenvalues6 has been extensively investi-

gated in the field of ‘quantum chaos’, and is believed to be a good indicator of the inte-

grable/chaotic features in the corresponding classical system due to the Berry-Tabor [51]

and Bohigas-Giannoni-Schmit [52] conjectures (for reviews, see [53, 54]). More specifically,

one expects that normalized level spacings s obey the Poisson distribution

ρPoisson(s) = e−s, (4.20)

6At a technical level, one must properly normalize, or ‘unfold’ these level spacings — the details can be

found in [50].
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Figure 1. Eigenvalue spacing distibutions obtained for the quantized SNH resonant system in three

(a) and four (b) spatial dimension for a particular eigenvalue block with N = 27 and E′ = 27. By

inspection, (a) follows the ‘Wigner surmise’ distribution associated with chaotic systems, while (b)

follows the Poisson distribution that alludes to its special structure (‘partial integrability’) discussed

in section 4.

for generic integrable systems (i.e., they statistically behave as distances between points

randomly thrown on a line with a unit mean density), and closely follow the ‘Wigner

surmise’

ρWigner(s) =
πs

2
e−πs

2/4, (4.21)

for quantized versions of classically chaotic systems (i.e. statistically behave as distances

between eigenvalues of Gaussian random matrices). We have explored this perpspective for

the SNH resonant system, having picked for our statistical analysis a particular Hamiltonian

block with N = 27 and E′ = 27. The results, depicted on figure 1, indicate that the three-

dimensional resonant system closely follows the ‘Wigner surmise’ distribution (with some

statistical scatter attributed to working with a finite number of eigenvalues), while the

corresponding plot for the four-dimensional system follows the Poisson distribution. This

blind analysis thus suggest that no integrability features are anticipated in three dimensions

(we expect similar results in more than four dimensions), while the case of four dimensions is

immediately spotted as special due to a different distribution of energy eigenvalue spacings.

It remains to be seen whether the Poisson curve in figure 1b alludes to any further analytic

structures for the SNH resonant system in four spatial dimensions, beyond those we have

already displayed explicitly in our considerations.

5 Higher dimensions

We conclude with some comments on the dynamics of the SNH system and its resonant

approximation in higher dimensions. Solutions of the SN equations are known to exist at

least for a finite time for initial data whose first (d/2 − 2) spatial derivatives are square-

integrable (more precisely, the Cauchy problem for the SN equation is locally well-posed in

the Sobolev space Hs(Rd) for s ≥ d/2−2 [55]). For small amplitude solutions in the energy
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subcritical dimensions d < 6, the norm H1(Rd) is controlled by the energy and therefore

conservation of energy implies global in time well-posedness in H1(Rd). An analogous result

has been proved for the energy subcritical SNH equation [56], however we are not aware

of any global existence result in d ≥ 6. In accord, the dimension d = 6 appears critical

for the resonant system (3.6) as well, which is reflected in the ultraviolet asymptotics

of the interactions coefficients. Namely, for any resonant combination of nonzero indices

(n, j, k, l), we have for λ→∞

Cλn,λj,λk,λl ∼ λβ , where β(d) =

{
−1/2 if d = 3,

(d− 6)/2 if d ≥ 5.
(5.1)

In the ‘solvable’ case d = 4 there is a logarithmic correction to the power law: Cλn,λj,λk,λl ∼
lnλ/λ. (Our conclusions on the asymptotic behavior of the interaction coefficients follow

from numerical studies, but it should be possible to derive this type of formulas analytically

using the methods of [57–59].) As follows from (5.1), in energy supercritical dimensions

d ≥ 7 the interaction coefficients grow with the mode number which creates hopes for inter-

esting short wavelength behaviors in these dimensions. This matter should be investigated

numerically (and, if possible, analytically), for instance, in search of turbulent behaviors

of the type seen in [7]. We leave this to future work.
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A Explicit form of the interaction coefficients

The integrals defining the interaction coefficients (3.5) can be computed to yield

Snjkl =
1

8
AnAjAkAl

j∑
p1=0

k∑
p2=0

n∑
p3=0

l∑
p4=0

aj,p1ak,p2an,p3al,p4

×

[
Γ

(
d

2
+ p1 + p2

)
Γ (1 + p3 + p4) + Γ

(
1 +

d

2
+ p1 + p2 + p3 + p4

)

×

(
−2F1

(
1 + p3 + p4, 1 + d

2 + p1 + p2 + p3 + p4; 2 + p3 + p4;−1
)

1 + p3 + p4

+
2F1

(
p3 + p4, 1 + d

2 + p1 + p2 + p3 + p4; 1 + d
2 + p3 + p4;−1

)
d
2 + p3 + p4

)]
, (A.1)
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where

An =

√
2n!

Γ(n+ d/2)
, an,p =

(−1)p

p!

(
n− 1 + d/2

n− p

)
. (A.2)

For even d, the hypergeometric functions in (A.1) are expressible in terms of elementary

functions. In four dimensions in particular, this gives

Snjkl =
1√

(n+ 1)(j + 1)(k + 1)(l + 1)

j∑
p1=0

k∑
p2=0

n∑
p3=0

l∑
p4=0

aj,p1ak,p2an,p3al,p4

×

(p1 + p2 + 1)!(p3 + p4)!−
(p1 + p2 + p3 + p4)!

2p1+p2+p3+p4+2

+(p1 + p2)!

p1+p2∑
p=0

(p+ p3 + p4)!

p!2p+p3+p4+2
(p− 2p1 − 2p2 + p3 + p4 − 1)

 . (A.3)

One can verify by an explicit calculation that S0000 = 1/2.

B Proof of identity Dnjkl = 0

Here we prove, using the properties of Laguerre polynomials, that for d = 4 the quantity

Dnjkl defined in (4.1) vanishes identically if l + k = n + j − 1. We begin by proving the

vanishing of Dnjkl with the (unsymmetrized) coefficients S̃njkl, given in (4.2), substituted

instead of C̃njkl. By definition,

Dnjkl =

∫ ∞
0

dρ

∫ ∞
0

dσmin(ρ, σ)e−ρ−σ
[
(n+ 1)L

(1)
n−1(ρ)L

(1)
j (σ)L

(1)
k (σ)L

(1)
l (ρ)

+ (j + 1)L(1)
n (ρ)L

(1)
j−1(σ)L

(1)
k (σ)L

(1)
l (ρ)− (k + 1)L(1)

n (ρ)L
(1)
j (σ)L

(1)
k+1(σ)L

(1)
l (ρ)

− (l + 1)L(1)
n (ρ)L

(1)
j (σ)L

(1)
k (σ)L

(1)
l+1(ρ)

]
. (B.1)

Using the identity nL
(1)
n (ρ) = (n+ 1)L

(1)
n+1(ρ)− ρL(2)

n−1(ρ), one can write

Dnjkl =

∫ ∞
0

dρ

∫ ∞
0

dσmin(ρ, σ)e−ρ−σ
[
(n+ j + k − l − 4)L(1)

n (ρ)L
(1)
j (σ)L

(1)
k (σ)L

(1)
l (ρ)

+ ρL
(1)
j (σ)L

(1)
k (σ)

(
L
(2)
n−1(ρ)L

(1)
l (ρ) + L(1)

n (ρ)L
(2)
l (ρ)

)
+ σL(1)

n (σ)L
(1)
l (σ)

(
L
(2)
j−1(ρ)L

(1)
k (ρ) + L

(1)
j (ρ)L

(2)
k (ρ)

)]
. (B.2)
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Remembering that l + k = n + j − 1, and applying the identities L
(1)
n = L

(n)
n − L(2)

n−1 and

∂ρL
(1)
n (ρ) = −L(2)

n−1(ρ), one can simplify Dnjkl further:

Dnjkl =

∫ ∞
0
dρ

∫ ∞
0
dσe−ρ−σ min(ρ, σ)(ρ+ σ − 3− ρ∂ρ − σ∂σ)L(1)

n (ρ)L
(1)
j (σ)L

(1)
k (σ)L

(1)
l (ρ)

=

∫ ∞
0

dρ

∫ ρ

0
dσe−ρ−σσ(ρ+ σ − 3− ρ∂ρ − σ∂σ)L(1)

n (ρ)L
(1)
j (σ)L

(1)
k (σ)L

(1)
l (ρ)

+

∫ ∞
0

dρ

∫ ∞
ρ

dσe−ρ−σρ(ρ+ σ − 3− ρ∂ρ − σ∂σ)L(1)
n (ρ)L

(1)
j (σ)L

(1)
k (σ)L

(1)
l (ρ)

= −
∫ ∞
0

dρ∂ρ

(
ρe−ρL(1)

n (ρ)L
(1)
l (ρ)

)∫ ρ

0
dσe−σσL

(1)
j (σ)L

(1)
k (σ)

−
∫ ∞
0

dρe−ρL(1)
n (ρ)L

(1)
l (ρ)

∫ ρ

0
dσ∂σ

(
σ2e−σL

(1)
j (σ)L

(1)
k (σ)

)
−
∫ ∞
0

dρ∂ρ

(
ρ2e−ρL(1)

n (ρ)L
(1)
l (ρ)

)∫ ∞
ρ

dσe−σL
(1)
j (σ)L

(1)
k (σ)

−
∫ ∞
0

dρe−ρρL(1)
n (ρ)L

(1)
l (ρ)

∫ ∞
ρ

dσ∂σ

(
e−σσL

(1)
j (σ)L

(1)
k (σ)

)
. (B.3)

Then the first term of the last representation may be rewritten with integration by parts∫ ∞
0

dρ∂ρ

(
ρe−ρL(1)

n (ρ)L
(1)
l (ρ)

)∫ ρ

0
dσe−σσL

(1)
j (σ)L

(1)
k (σ)

= −
∫ ∞
0

dρe−2ρρ2L(1)
n (ρ)L

(1)
j (ρ)L

(1)
k (ρ)L

(1)
l (ρ), (B.4)

while the second term of this sum can be simply integrated to∫ ∞
0

dρe−ρL(1)
n (ρ)L

(1)
l (ρ)

∫ ρ

0
dσ∂σ

(
σ2e−σL

(1)
j (σ)L

(1)
k (σ)

)
=

∫ ∞
0

dρe−2ρρ2L(1)
n (ρ)L

(1)
j (ρ)L

(1)
k (ρ)L

(1)
l (ρ). (B.5)

The third and fourth terms are treated analogously, and the whole sum reduces to zero.

We may repeat these computations for Snjlk and also get zero. These two calculations

imply that Dnjkl, as defined in (4.1), is identically zero for l + k = n+ j − 1.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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