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Abstract It has recently been conjectured that the Anti-de Sitter space is unstable
under arbitrarily small perturbations. This article (based on my plenary talk of the
same title at the conference GR20 in Warsaw) briefly reviews numerical and analytical
evidence supporting this conjecture, putting emphasis on weak turbulence as a driving
mechanism of instability.
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1 Introduction

Over the past 15 years asymptotically Anti-de Sitter (AdS) spacetimes have come to
play a central role in theoretical physics, primarily due to the AdS/quantum field theory
(CFT) correspondence which is the conjectured equivalence between string theory
on an asymptotically AdS spacetime and a conformally invariant CFT living on the
boundary of this spacetime [27]. For strongly coupled CFT, the string dual effectively
reduces to classical AdS gravity which makes the following strategy attractive: (i)
construct a gravity side of duality, (ii) use an AdS/CFT dictionary to translate the
result to the CFT side, and (iii) compare the result to the real-world physics that your
CFT is supposed to model. The problem with this holographic approach to modeling
non-equilibrium processes (like heavy ion collisions) is that our current understanding
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of the gravity side is very limited in the non-stationary regime. This provides strong
motivation for studying the dynamics of asymptotically AdS spacetimes, especially
that, regardless of potential AdS/CFT applications, this is an interesting problem in
classical general relativity on its own.

2 Anti-de Sitter space

Anti-de Sitter space is the maximally symmetric Lorentzian manifold with constant
negative scalar curvature. In d + 1 dimensions it can be represented geometrically as
the hyperboloid of radius �

X2
1 + · · · + X2

d − U 2 − V 2 = −�2 (1)

embedded in the flat d + 2 dimensional space with metric

ds2 = d X2
1 + · · · + d X2

d − dU 2 − dV 2. (2)

In terms of the parametrization X = rω (where ω ∈ Sd−1), U = √
r2 + �2 sin(τ/�),

and V = √
r2 + �2 cos(τ/�), the induced metric on the hyperboloid (1) is

g = −(1 + r2/�2) dτ 2 + dr2

1 + r2/�2 + r2dω2, (3)

where dω2 is the round metric on the unit (d − 1) – dimensional sphere. This metric
is the solution of vacuum Einstein’s equations Gαβ + �gαβ = 0 with negative cos-

mological constant� = − 2

d(d − 1)�2 . The advantage of representing the AdS space

by embedding is that its symmetry group O(2, d − 1) is manifest. The disadvantage
is that the hyperboloid (1) has the topology S1 × R

d and the circles S1 are closed
timelike lines. A simple remedy to this causality violation is to unroll the circle S1 to
its covering space R and thereby pass to the universal covering space of AdS with the
topology of R

d+1. Henceforth, by the AdS space we shall always mean this universal
covering space.

The AdS space has peculiar causal properties. To see them, it is convenient to
introduce dimensionless coordinates t = τ/� and x = arctan(r/�)with range (t, x) ∈
R × [0, π/2), in which the metric (3) takes the form1

g = �2

cos2x

(
−dt2 + dx2 + sin2x dω2

)
, (4)

showing that the AdS space is conformal to half of the Einstein static universe. The
conformal infinity I = {x = π/2} is the timelike cylinder R×Sd−1 with the boundary
metric gI = −dt2 + dω2 (the conformal diagram of AdS is shown in Fig. 1). Even

1 In the following we choose the AdS radius � as the unit of length which is equivalent to setting � = 1.
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Fig. 1 The conformal diagram
of AdS space (all angular
dimensions have been
suppressed). The diagram is
endless in the future and past
directions. The light ray sent
outwards from the point (0, 0)
follows the null geodesic t = x
and reaches infinity at the point
(π/2, π/2). Beyond this point
the evolution of the light ray (as
governed by Maxwell’s
equations) depends on the
choice of a boundary condition
at x = π/2, which is indicated
by the question mark

though the spatial distance from any point in the region 0 ≤ x < π/2 (the ‘bulk’) to the
boundary I is infinite, null geodesics get there in finite time (but infinite affine time so
they are future complete). As a consequence of the timelike spatial (and null) infinity,
the AdS space is not globally hyperbolic, that is there is no Cauchy hypersurface. In
order to determine of evolution of fields on AdS one has to prescribe – in addition to
initial data on the t = 0 hypersurface – suitable boundary conditions at I.

Spacetimes that approach the AdS space at infinity fast enough and have the same
conformal boundary are called asymptotically AdS spacetimes2. Asymptotically AdS
spacetimes may be very different from the pure AdS in the bulk, in particular may
contain horizons. A prototype asymptotically AdS spacetime, besides the AdS space
itself, is the AdS-Schwarzschild black hole with the metric

gS = 1

cos2x

(
−A dt2 + A−1dx2 + sin2x dω2

)
, A = 1 − M(cos x)d

(sin x)d−2 , (5)

where M > 0 is the mass. By the positive energy theorem (for globally regular solu-
tions of Einstein’s equations with matter satisfying the dominant energy condition),
the AdS space is a ground state among asymptotically AdS spacetimes [20], much as
Minkowski space is a ground state among asymptotically flat spacetimes [31,34].

For any ground state the fundamental question is whether it is stable, i.e. do small
perturbations of it at t = 0 remain small for all future times (where ‘small’ is defined in
terms of an appropriate norm)? For Minkowski space this question has been answered
in affirmative by Christodoulou and Klainerman [13] who proved that sufficiently small
perturbations not only remain small but decay to zero with time in any compact region
(this stronger type of stability is called asymptotic stability). The physical mechanism
responsible for the asymptotic stability of Minkowski space is the dissipation by
dispersion, that is the radiation of energy of perturbations to infinity.

2 For precise definitions of asymptotically AdS spacetimes see, e.g., [2,14,19,22].
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In the case of AdS, the question of stability must be supplemented by a choice of
boundary conditions at infinity and, a priori, an answer may depend on the choice [18].
Once this choice is made, one has to show that the initial-boundary value problem is
locally well-posed; otherwise the question of stability does not make mathematical
sense3. Such a local well-posedness result for a large class of AdS boundary conditions
was proved by Friedrich for vacuum Einstein’s equations with negative cosmological
constant in four dimensions [19]. Here I will consider only so called reflective boundary
conditions for which there is no flux of energy across the conformal boundary. In this
case the asymptotic stability of AdS is precluded because the conformal boundary acts
like a mirror at which perturbations propagating outwards bounce off and return to the
bulk. This leads to complex nonlinear wave interactions in the bulk, understanding of
which appears challenging even for small perturbations. Thus, it is no wonder that the
question of stability of AdS space remains open.

What is astonishing, however, is that until 2011 this basic question has been com-
pletely ignored in the avalanche of papers on asymptotically AdS spacetimes triggered
by [27]. The only exception I know is the paper by Anderson [1] in which he proved
that the only globally regular in time asymptotically AdS spacetime that tends to AdS
for t → ±∞ is the AdS space itself (this rigidity result is hardly surprising for a
system that cannot lose energy to infinity). In the same paper Anderson cautiously
conjectured stability of AdS by writing: “One expects that gAd S is in fact dynamically
stable, with the behavior of the nonlinear exact solutions nearby to gAd S well-modeled
on the linearized behavior.” As far as I remember, this conjecture reflected the majority
view4 at the workshop “Global Problems in Mathematical Relativity II” held at the
Newton Institute (Cambridge) in October 2006, where the problem of stability of AdS
was widely discussed and where I got interested in it.

3 Linear stability of AdS

Before addressing the hard question of nonlinear stability, let us consider a much
simpler question of linear stability of AdS. For reflective boundary conditions this
question reduces to a spectral problem for a certain master linear operator whose
coefficients depend on the character (scalar, electromagnetic, or gravitational) of the
perturbation. The pioneering studies of this problem by Breitenlohner and Freedman
[7] (see also [3]) have been more recently extended and completed by Ishibashi and
Wald [25]. Let us summarize their results in the case of scalar perturbations, that
is for the Klein-Gordon equation �gψ − μ2ψ = 0 on the AdS background. After
separation of angular variablesψ(t, x, ω) = ∑

k φk(t, x) Yk(ω) (where Yk(ω) are the
scalar spherical harmonics on Sd−1), one gets

3 I point out this obvious fact because sometimes, especially in numerical studies, the ill-posedness is
mistaken with instability.
4 Not all seemed to share this view: in his talk at this workshop [15], M. Dafermos expressed some
concerns whether stability is possible in the presence of non-decaying linearized perturbations. However,
these concerns were not based on physical arguments for instability but rather on the lack of conceivable
mathematical methods of proving stability in the absence of dissipation by dispersion.
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∂2
t φ + Lφ = 0 , L = − 1

(tan x)d−1 ∂x

(
(tan x)d−1 ∂x

)
+ μ2

cos2x
+ �(�+ d − 2)

sin2x
,

(6)

where � is the degree of the spherical harmonic and the collective index k on φk has
been dropped. One finds that for ν2 := d2/4 + μ2 > 0 solutions of this equation
behave near I as follows (using y = π/2 − x)

φ(t, x) ∼ c+(t) y
d
2 +ν + c−(t) y

d
2 −ν, (7)

which gives rise to three possible boundary conditions at infinity, usually referred to as
the Dirichlet (c− = 0), Neumann (c+ = 0), or Robin (c++γ c− = 0) boundary condi-
tions. The operator L , defined on the Hilbert space H = L2([0, π/2], (tan x)d−1 dx),
is positive for ν2 ≥ 0. The lower limit ν2 = 0 corresponds to the well-known
Breitenlohner-Freedman mass bound μ2 = −d2/4 [7] (in this case the second solu-
tion in (7) falls off as yd/2 log y). Below this bound (i.e. for ν2 < 0) there is no way to
define unitary dynamics. For ν2 ≥ 1 the operator L is essentially self-adjoint and the
Dirichlet boundary condition is forced by the requirement of square integrability. For
0 ≤ ν2 < 1 there is a one-parameter freedom of choosing a self-adjoint extension,
which amounts to choosing the Dirichlet, Neumann, or Robin boundary condition.

This and an analogous result for electromagnetic and gravitational perturbations
imply that the AdS space is linearly stable under scalar, electromagnetic, and gravi-
tational perturbations obeying the reflecting (Dirichlet or Neumann) boundary condi-
tions at infinity. The eigenvalue equation Lφ = ω2φ is of hypergeometric type, hence
the eigenmodes can be found explicitly. For example, in the case of Dirichlet boundary
condition one finds the eigenvalues (k = 0, 1, . . . )

ω2
k = (2k + ν + σ + 1)2 , where σ 2 = �(�+ d − 2)+ (d − 2)2/4. (8)

The corresponding orthonormal eigenfunctions are

ek(x) = dk (cos x)
d
2 +ν(sin x)σ+1− d

2 2F1(k + ν + σ + 1,−k, 1 + σ ; sin2x), (9)

where dk is a normalization factor ensuring that (e j , ek) = δ jk (hereafter, ( f, g)
denotes the inner product in H). It follows from (8) that the eigenfrequencies ωk are
equidistant, hence the linearized waves are nondispersive. This property will have
important consequences for the nonlinear stability analysis.

Linearized dynamics (6) provides an accurate approximation of short time behavior
of small perturbations of AdS and establishing linear stability is an important first
step in understanding stability. However, the linear stability by no means implies
(nonlinear) stability.

4 Nonlinear instability of AdSd+1 for d ≥ 3

The question of stability of AdS in full generality seems to be out of reach of current
PDE technology so it is natural to consider more tractable special cases, in partic-
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ular spherically symmetric perturbations. Since by Birkhoff’s theorem spherically
symmetric vacuum solutions are static, one has to add matter to generate dynamics.
A simple matter model is a self-gravitating minimally coupled massless scalar field
whose dynamics is described by the Einstein-scalar field equations

Gαβ +�gαβ = 8πG

(
∂αφ ∂βφ − 1

2
gαβ(∂φ)

2
)
, gαβ∇α∇βφ = 0. (10)

In the asymptotically flat case (� = 0) the studies of this model have brought important
insights, most notably the proof of weak cosmic censorship by Christodoulou [11,12]
and the discovery of critical phenomena at the threshold for black hole formation by
Choptuik [10].

A few years ago, Andrzej Rostworowski and I have set out to investigate the system
(10) with � < 0 in spherical symmetry. We assumed the following parametrization
of spherically symmetric asymptotically AdS spacetimes

g = 1

cos2x

(
−Ae−2δdt2 + A−1dx2 + sin2x dω2

)
, (11)

where A and δ are functions of (t, x). For this ansatz Eq. (10) reduce to the quasilinear
system consisting of the scalar wave equation

∂t

(
A−1eδ∂tφ

)
= 1

(tan x)d−1 ∂x

(
(tan x)d−1 A e−δ∂xφ

)
, (12)

coupled to two ordinary differential equations (we set 8πG = d − 1)

∂x A = d − 2 + 2 sin2x

sin x cos x
(1 − A)− sin x cos x A ρ, ∂xδ = − sin x cos x ρ,

(13)

where ρ = A−2e2δ(∂tφ)
2 + (∂xφ)

2 is the scalar field energy density. Guided by the
Schwarzschild-AdS solution (5), it is useful to define the mass function m(t, x) by
A(t, x) = 1−m(t, x)(cos x)d/(sin x)d−2. The requirement of no flux of mass through
I enforces the Dirichlet asymptotics (using y = π/2 − x)

φ(t, x) ∼ yd , δ(t, x)− δ(t,∞) ∼ y2d , A(t, x)− 1 ∼ yd . (14)

For these boundary conditions, the total mass, defined as M = limx→π/2 m(t, x), is
finite and conserved in time. The system of Eqs. (12) and (13) with the boundary
conditions (14) and compatible smooth initial data (φ, ∂tφ)|t=0 constitutes a locally
well-posed initial-boundary value problem [24]. Our investigations of global behavior
of small data solutions to this problem have led us to the following conjecture (within
the model, of course):

Conjecture 1 ([5]). The AdSd+1 space (for d ≥ 3) is unstable against the formation
of a black hole for a large class of arbitrarily small perturbations.
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In mathematical terms, a black hole is detected by the formation of an apparent
horizon at a radius xH where the metric function A(t, x) drops to zero. Although our
coordinate system breaks down at this point, it is clear from elsewhere (for instance,
numerical simulations in horizon-penetrating coordinates or rigorous results [24]) that
eventually all the matter will fall inside the horizon and the spacetime will settle down
to the Schwarzschild-AdS black hole (5) with mass M equal to the initial mass.

The evidence for Conjecture 1, first given for d = 3 [5] and later generalized to
d ≥ 3 [26], is based on perturbative and numerical calculations, which will be now
summarized.

Perturbative evidence. For small initial data (φ, ∂tφ)|t=0 = (ε f (x), εg(x)), the
dynamics of solutions can be described (as long as the solutions remain small) using
weakly nonlinear perturbation analysis. To this end we expand the solution in the
perturbation series

φ = εφ1 + ε3φ3 + . . . , δ = ε2δ2 + ε4δ4 + . . . , 1 − A = ε2 A2 + ε4 A4 + . . .

(15)

where (φ1, ∂tφ1)|t=0 = ( f (x), g(x)) and (φ j , ∂tφ j )|t=0 = (0, 0) for j > 1. Inserting
the expansion (15) into the field Eqs. (12) and (13) and collecting terms of the same
order in ε, we obtain a hierarchy of linear equations which can be solved order-by-
order. At the first order we get for φ1 the linear wave equation (6) with zero potential
(becauseμ = 0 and � = 0). In this case the eigenfrequencies (8) and the eigenfunctions
(9) simplify to

ωk = 2k + d, ek(x) = dk (cos x)d 2F1(k + d,−k, d/2; sin2x). (16)

Thus, at the linear level the solution is

φ1(t, x) =
∞∑

k=0

ak cos(ωk t + βk) ek(x), (17)

where the amplitudes ak and phases βk are determined by the initial data. Using this
solution at the second order we get from (13) the perturbations of metric functions A2
and δ2 (so called backreaction) and at the third order we obtain an inhomogeneous
linear wave equation φ̈3+Lφ3 = S, where the source S depends onφ1, A2, δ2 and their
first derivatives. Projection of this equation on the basis {ek} yields an infinite system
of decoupled forced harmonic oscillators for the generalized Fourier coefficients ck :=
(φ3, ek)

c̈k + ω2
k ck = Sk := (S, ek). (18)

A calculation shows that each triple ( j, l,m) of indices of nonzero modes in the
linearized solution (17) such that ωk = ω j + ωl − ωm gives rise to a resonant term
in Sk (i.e. a term proportional to cosωk t or sinωk t). Note that this abundance of
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resonances is a consequence of the nondispersive character of the linearized spectrum.
Some of the resonances may be removed by renormalizing the frequency, however the
remaining resonances give rise to secular terms that grow linearly in time. A similar
nonlinear perturbation analysis has been performed for the vacuum Einstein equations
in [16]. This breakdown of the perturbation expansion at the third order signals the
onset of instability at time of order ε−2. We believe that the secular terms appearing in
φ3 are progenitors of the higher-order resonant mode mixing which shifts the energy
spectrum to higher frequencies.

Numerical evidence. The perturbative analysis is corroborated by numerical simula-
tions which show that, indeed, generic perturbations start to grow rapidly after a time
∼ ε−2 (see Fig. 2 in [5]). This growth eventually leads to the formation of a horizon. On
a heuristic level, the formation of the horizon is an expected consequence of the trans-
fer of energy to high frequencies and, eo ipso, small spatial scales. Put differently, the
formation of a black hole (in an amusing analogy to viscosity in fluid turbulence) pro-
vides a natural cutoff for the turbulent energy cascade. Our numerical results have been
confirmed and extended to complex scalar fields by Buchel, Lehner, and Liebling [9].

To demonstrate the transfer of energy to high frequencies we defined the Fourier
coefficients �k := (A1/2 ∂xφ, ∂x ek) and �k := (A−1/2eδ ∂tφ, ek) and expressed the
total mass as the Parseval sum M = ∑∞

k=0 Ek(t), where Ek := �2
k + ω−2

k �2
k is the

k-mode energy. The evolution of the energy spectrum, that is the distribution of mass
among the modes, is depicted in Fig. 2 for gaussian initial data. Initially, the energy
is concentrated in low modes; the exponential cutoff of the spectrum expresses the
smoothness of initial data. During the evolution the range of excited modes increases
and the spectrum becomes broader. Just before horizon formation the spectrum exhibits
the power-law scaling Ek ∼ k−α , where the exponent α seems to be universal, i.e.
the same for all collapsing solutions (but depending on dimension d). Clearly, the

 0.0001

 0.001

 0.01

 0.1

 1

 10  100  1000

E
k
/M

k

t=0
t=1100
t=1495

Fig. 2 Log-log plot of the energy spectrum for d = 3 at three moments of time: initial, intermediate, and
just before collapse. The fit of power law Ek ∼ k−α at t = 1495 gives the slope α ≈ 1.2
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Fig. 3 Left panel: the bifurcation diagram for the first three time-periodic solutions in d = 4. Right panel:
A two-dimensional projection of the phase trajectory is shown to remain closed after several hundreds of
periods (see [29] for notation)

formation of the power-law spectrum reflects the loss of smoothness of the solution
during collapse, however we have not been able to compute α analytically.

It should be stressed that the resonant transfer of energy is not active for some pertur-
bations. For example, solutions starting from one-mode initial data [5] or one-mode-
dominated initial data [8] appear almost periodic for a very long (possibly infinite)
time. In particular, there is good evidence for the existence of time-periodic solutions.
The existence of such solutions (geons) was first conjectured by Dias, Horowitz and
Santos [16] for the vacuum Einstein equations on the basis of perturbative calculations.

For the Einstein-massless scalar model time-periodic solutions, bifurcating from
the eigenmodes on the linearized spectrum, were constructed by Maliborski and Ros-
tworowski [29] in two independent ways: the Poincaré-Lindstedt perturbative method
and a numerical spectral method. The outcomes of these two methods agree with
great accuracy which leaves no reasonable doubt that time-periodic solutions are real
entities. Moreover, numerical evolution of the corresponding initial data retraces the
periodic loop for hundreds of periods (see Fig. 3) which indicates that these time-
periodic solutions are stable.

5 Nonlinear instability of AdS3

Conjecture 1 is restricted to dimensions d ≥ 3. The case of three-dimensional AdS
gravity (d = 2) is different for a very simple reason: for initial data with mass M < 1 no
apparent horizon can form because A(t, x) = 1−m(t, x) cos2x > 0. This is reflected
in the mass gap5 between AdS3 and the lightest black hole solution6 (5) with M = 1.
Since small perturbations of AdS3 cannot evolve into black holes, we are left with
the dichotomy: naked singularity formation or global-in-time regularity. Recently,

5 The existence of this finite mass threshold for black hole formation is a manifestation of the energy critical
character of Einstein’s equations in three dimensions.
6 AdS-Schwarzschild black holes in three dimensions are called BTZ black holes [4].
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together with Joanna Jałmużna [6] we attempted to resolve this dichotomy for the
Einstein-scalar field system (12)–(13) with the boundary conditions (14). We found
that for typical initial data the dynamics is turbulent. The heuristic explanation of the
mechanism which triggers the turbulent behavior is the same as in higher dimensions,
namely the generation of secular terms by resonant four-wave interactions. Actually,
in three dimensions the rate of transfer of energy to high frequencies is much faster
than in higher dimensions which puts stringent demands on the spatial resolution and
severely limits the times accessible in numerical simulations.

In order to extract information about regularity of solutions from numerical data, we
used the analyticity strip method due to Sulem, Sulem, and Frisch [33]. This method is
based on the following idea. Consider a solution u(t, x) of some nonlinear evolution
equation for real-analytic initial data and let u(t, z) be its analytic extension to the
complex plane of the spatial variable. Typically, u(t, z)will have complex singularities
(coming in complex-conjugate pairs) which move in time. The imaginary part of the
complex singularity z = x + iρ closest to the real axis determines the radius of
analyticity of the solution. Monitoring the time evolution of ρ(t) and checking if it
vanishes (or not) in finite time, one can predict (or exclude) the blowup. The key
observation is that the value of ρ is encoded in the asymptotic behaviour of Fourier
coefficients of u(t, x) which decay exponentially as exp(−ρk) for large k (with an
algebraic prefactor depending on the type of the singularity). Therefore, the analyticity
radius ρ(t) can be obtained by fitting an exponential decay to the tail of the numerically
computed Fourier spectrum. Applying this technique to the problem at hand we have
arrived at the following conclusion:

Conjecture 2 ([6]) Small smooth perturbations of AdS3 remain smooth for all times
but their radius of analyticity shrinks to zero exponentially fast.

The evidence supporting this conjecture is summarized in Figs. 4 and 5 generated
from the numerical evolution of small gaussian perturbations. In Fig. 4, showing the
evolution of energy spectrum, one can see that the range of frequencies participating
in the evolution increases very rapidly but, in contrast to Fig. 2, no power-law behavior
is seen. In accord with the analyticity strip method we assumed that for large wave
numbers the energy spectrum is described by the formula Ek(t) = C(t) k−β(t)e−2ρ(t)k .
Fitting this formula to the numerical data we found that after some transient period
of time the radius of analyticity ρ(t) is well approximated by the exponential decay
ρ(t) = ρ0 e−t/T with the characteristic decay time T scaling as ε−2, where ε is the
amplitude of perturbation. The good quality of this fit (see Fig. 3 in [6]) suggests
(with a little dose of optimism) that the exponential decay can be extrapolated forever,
thereby justifying Conjecture 2.

The exponentially fast shrinking of the radius of analyticity is reflected in the expo-
nentially fast growth of Sobolev norms Ḣs of the scalar field for s > 1, as illustrated
in Fig. 5 for s = 2. After an initial quiescent period, whose duration scales as ε−2, the
maxima of Ḣ2(t) begin to grow exponentially approximately as exp(t/T ). Thus, even
though smooth initially small perturbations remain smooth forever, they do not remain
small in any reasonable norm that captures the turbulent behavior, which means that
AdS3 is unstable. This kind of gradual loss of regularity, where solutions develop pro-
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Fig. 4 Time evolution of the energy spectrum for a small gaussian perturbation

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 0  50  100  150  200

ln
 H. 2

t

ε=0.3
ε=0.3√⎯2

ε=0.6

 5

 5.5

 6

 6.5

 7

 7.5

 8

 8.5

 9

 0  5  10  15  20

ln
 (

H. 2/
ε2 )

ε2 t

Fig. 5 Time evolution of the Sobolev norm Ḣ2 = ‖∂2
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curves are shown to coincide after rescaling t → ε2t, Ḣ2 → ε−2 Ḣ2

gressively finer spatial scales as t → ∞ without ever losing smoothness (sometimes
referred to as weak turbulence), has been well known in fluid dynamics [35].

6 Concluding remarks

The attempts to answer the question raised in the title have opened up new and unex-
pected research paths lying at the interface of general relativity and theory of turbu-
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lence, which is pretty much an uncharted territory. Admittedly, the results presented
above raise more questions than giving answers. Let me conclude by mentioning
some of the most interesting open questions (besides, of course, proving or refuting
Conjectures 1 and 2):

– What is the role of negative cosmological constant� in the observed phenomena?
Is an extra attractive force due to� important in triggering instability of AdS, or is
the only role of� to confine the evolution in an effectively bounded domain? Some
evidence for the latter was given by Maliborski who observed a similar turbulent
instability for flat space inside a spherical cavity with perfectly reflecting walls
[28].

– Is the nondispersive character of the linearized spectrum essential for the turbulent
instability? In other words, how important are exact resonances as a driving mech-
anism of the turbulent cascade (see [17] for an interesting discussion of this issue).
In attempting to answer this very difficult question, touching upon the celebrated
KAM theorem and the problem of small denominators, one should keep in mind
that an answer is not known for such simple equations as the cubic wave equation
∂2

t φ − ∂2
xφ + μ2φ + φ3 = 0 on the interval 0 ≤ x ≤ π with Dirichlet boundary

conditions. Note that in this case the linear dispersion relation is ωk = √
k2 + μ2,

hence the linearized waves are nondispersive only for μ = 0 [in contrast to the
linearized waves on AdS which are nondispersive for any μ, as follows from (8)].

– What determines the exponent in the power-law energy spectrum of the turbulent
cascade in d ≥ 3?

– What determines a borderline of stability islands around time-periodic solutions?
This is closely related to the question of how generic is the turbulent instability.

– What happens outside spherical symmetry? In particular, what is the endpoint of
instability of AdSd+1 in d ≥ 3 for non-spherical perturbations? The answer is far
from obvious, because it is not clear if a natural candidate for the endstate, the
Kerr-AdS black hole, is stable itself (possible obstructions to stability being due
to superradiance and stable trapping phenomena [23]).

– What is the nature of the threshold for black hole formation in d = 2? Numerical
investigations of this question by Pretorius and Choptuik [30] provided important
insights into the near-critical dynamics, however the critical solution itself remains
not understood [21]. Does every solution with M > 1 evolve into a black hole?

In conclusion, I cannot resist noting that the results described above demonstrate
once again that from numerical explorations of Einstein’s equations one can gain under-
standing of phenomena which would hardly be possible by purely analytic means. The
computer, as an astronomer’s telescope, allows us to see things that otherwise could
have remained hidden. The role of computation in general relativity seems destined
to expand in future.
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