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Abstract
We consider the late-time asymptotic behavior for solutions of Einstein’s
equations with the wave map matter. Using the third-order perturbation
expansion about the flat spacetime we show that solutions starting from small
compactly supported �-equivariant initial data with � � 1 decay as t−(2�+2) at
future timelike infinity and as u−(�+1) at future null infinity.

PACS numbers: 04.40.Nr, 04.25.Nx

1. Introduction

In this paper, we continue our investigations, initiated in [1], of the precise quantitative
description of the late-time asymptotic behavior of self-gravitating massless fields. In [1] we
considered the simplest case of a spherically symmetric massless scalar field. Using nonlinear
perturbation analysis we showed that solutions starting from small initial data decay as t−3 at
timelike infinity and as u−2 at null infinity. We also derived a simple analytic formula for the
amplitude of the late-time tail in terms of initial data.

Here we study the analogous problem for wave maps which are a natural geometric
generalization of the wave equation for the massless scalar field. This generalization seems
interesting because in the so-called equivariant case the homotopy index � of the map plays
the role similar to the multipole index for spherical harmonics. However, in contrast to
the decomposition of a scalar field into spherical harmonics which makes sense only at the
linearized level, it is consistent to study nonlinear evolution for the wave map within a fixed
equivariance class. In this sense �-equivariant self-gravitating wave maps can serve as a
poor man’s toy-model of non-spherical collapse. The � = 0 case reduces to the spherically
symmetric massless scalar field analyzed in [1] so hereafter we assume that � � 1. We note
aside that the � = 1 case has been extensively studied in the past focusing on the critical
behavior at the threshold of black hole formation [2–6]; however, to our knowledge, the
late-time behavior of wave maps coupled to gravity has not been analyzed before.
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Using the same third-order perturbation expansion about the flat spacetime as in [1] we
show here that for small compactly supported initial data the late-time tail of the self-gravitating
�-equivariant wave map decays as t−(2�+2) at future timelike infinity and as u−(�+1) at future
null infinity. We also compute the amplitude of the tail in terms of initial data. These analytic
results are verified by the numerical integration of the Einstein wave map equations.

2. Setup

Let U : M → N be a map from a spacetime (M, gab) into a Riemannian manifold (N ,GAB).
A pair (U, gab) is said to be a wave map coupled to gravity if it is a critical point of the action
functional

S =
∫
M

(
R

16πG
− λ

2
gab∂aU

A∂bU
BGAB

)
dv, (1)

where R is the scalar curvature of the metric gab, G is Newton’s constant, λ is the wave map
coupling constant and dv is the volume element on (M, gab). The field equations derived
from (1) are the Einstein equations Rab − 1

2gabR = 8πGTab with the stress–energy tensor

Tab = λ
(
∂aU

A∂bU
B − 1

2gab(g
cd∂cU

A∂dU
B)

)
GAB, (2)

and the wave map equation

�gU
A + �A

BC(U)∂aU
B∂bU

Cgab = 0, (3)

where �A
BC are the Christoffel symbols of the target metric GAB and �g is the wave operator

associated with the metric gab. As a target manifold we take the three-sphere with the round
metric in polar coordinates UA = (F,�,�) :

GAB dUA dUB = dF 2 + sin2F(d�2 + sin2� d�2). (4)

For the four-dimensional spacetime M we assume spherical symmetry and use the following
ansatz for the metric

gab dxa dxb = e2α(t,r)(−e2β(t,r) dt2 + dr2) + r2(dθ2 + sin2θ dφ2). (5)

In addition, we assume that the map U is spherically �-equivariant, that is

F = F(t, r), (�,�) = 
�(θ, φ), (6)

where 
� : S2 → S2 is a harmonic eigenmap with eigenvalue �(� + 1) (the components
of 
� are homogeneous harmonic polynomials of degree �). Since the energy density of
a harmonic eigenmap is constant [7], the energy–momentum tensor (2) for the ansatz (6)
does not depend on angles and thus can be consistently coupled to the spherically symmetric
Einstein equations. We note in passing that a very similar idea of introducing the ‘angular
momentum’ into spherical collapse was put forward by Olabarrieta et al [8] in the context

of critical phenomena. In terms of the mass function m(t, r) = 1

2
r(1 − e−2α), the Einstein

equations take the following form (hereafter primes and dots denote partial derivatives with
respect to r and t, respectively):

m′ = κ

2
r2 e−2α(F ′2 + e−2βḞ 2) + κ

�(� + 1)

2
sin2F, (7)

ṁ = κ r2 e−2αḞ F ′, (8)

β ′ = 2m

r2
e2α − κ�(� + 1) e2α sin2F

r
, (9)
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where κ = 4πGλ is a dimensionless parameter. The wave map equation (3) takes the form

(e−βḞ )· − 1

r2
(r2 eβF ′)′ + eβ+2α�(� + 1)

sin 2F

2r2
= 0. (10)

For � = 0 the above equations reduce to the Einstein-massless scalar field equations analyzed
by us in [1]. For κ = 0 (no gravity), equations (7)–(9) are trivially solved by m = 0 and
β = 0, while equation (10) reduces to the flat space wave map equation.

3. Iterative scheme

We assume that initial data are small, smooth and compactly supported (the last assumption
can be replaced by a suitable fall-off condition):

F(0, r) = εg(r), Ḟ (0, r) = εh(r). (11)

We make the following perturbative expansion:

m(t, r) = m0(t, r) + εm1(t, r) + ε2m2(t, r) + · · · , (12)

β(t, r) = β0(t, r) + εβ1(t, r) + ε2β2(t, r) + · · · , (13)

F(t, r) = F0(t, r) + εF1(t, r) + ε2F2(t, r) + ε3F3(t, r) + · · · . (14)

Substituting this expansion into the field equations and grouping terms with the same power
of ε we get the iterative scheme which can be solved recursively.

We consider perturbations about Minkowski spacetime, so m0 = β0 = F0 = 0. At the
first order, the metric functions m1 = β1 = 0 (this follows from regularity at r = 0), while F1

satisfies the flat space radial wave equation for the �th spherical harmonic:

�(�)F1 = 0, �(�) = ∂2
t − ∂2

r − 2

r
∂r +

�(� + 1)

r2
, (15)

with initial data F1(0, r) = g(r), Ḟ 1(0, r) = h(r). The general everywhere regular solution
of equation (15) is given by a superposition of outgoing and ingoing waves:

F1(t, r) = F ret
1 (t, r) + F adv

1 (t, r), (16)

where

F ret
1 (t, r) = 1

r

l∑
k=0

(2� − k)!

k!(� − k)!

a(k)(u)

(v − u)�−k
,

F adv
1 (t, r) = 1

r

�∑
k=0

(−1)k+1 (2� − k)!

k!(� − k)!

a(k)(v)

(v − u)�−k

(17)

and u = t − r and v = t + r are the retarded and advanced times, respectively (the superscript
in parentheses denotes the kth derivative). Note that for compactly supported initial data,
the generating function a(x) can be chosen to have compact support as well (this condition
determines a(x) uniquely).

At the second order �(�) F2 = 0, hence F2 = 0 (because it has zero initial data), while
the metric functions satisfy the following equations:

m′
2 = κ

2
r2

(
Ḟ 2

1 + F ′2
1 +

�(� + 1)

r2
F 2

1

)
, (18)

ṁ2 = κ r2Ḟ 1F
′
1, (19)
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β ′
2 = 2m2

r2
− κ

�(� + 1)

r
F 2

1 . (20)

We temporarily postpone the discussion of this system and proceed now to the third order,
where we have

�(l)F3 = 2β2F̈ 1 + β̇2Ḟ 1 + β ′
2F

′
1 − 2�(� + 1)m2F1

r3
+

2�(� + 1)F 3
1

3r2
. (21)

To solve this equation, we use the Duhamel formula for the solution of the inhomogeneous
wave equation �(�) F = N(t, r) with zero initial data:

F(t, r) = 1

2r

∫ t

0
dτ

∫ t+r−τ

|t−r−τ |
ρP�(μ)N(τ, ρ) dρ, (22)

where P�(μ) are Legendre polynomials of degree � and μ = (r2 + ρ2 − (t − τ)2)/2rρ

(note that −1 � μ � 1 within the integration range). Applying this formula to
equation (21), using null coordinates η = τ − ρ and ξ = τ + ρ, and the abbreviation
K(m, β, F ) = 2βF̈ + β̇Ḟ + β ′F ′ − (2�(� + 1)/r2)(mF/r − F 3/3), we obtain

F3(t, r) = 1

8r

∫ t+r

|t−r|
dξ

∫ t−r

−ξ

(ξ − η)P�(μ)K(m2(ξ, η), β2(ξ, η), F1(ξ, η)) dη, (23)

where now μ = (r2 + (ξ − t)(t − η))/r(ξ − η). If the initial data (11) vanish outside a ball
of radius R, then for t > r + R we may drop the advanced part of F1(t, r) and interchange the
order of integration in (23) to get

F3(t, r) = 1

8r

∫ ∞

−∞
dη

∫ t+r

t−r

(ξ − η)P�(μ)K(m2(ξ, η), β2(ξ, η), F ret
1 (ξ, η)) dξ. (24)

In order to determine the late-time behavior of F3(t, r), we need to know the behavior of the
source term K along the light cone for large values of r (the intersection of the integration
range in (24) with the support of F ret

1 (t, r)). Having that, we shall expand the function K in
(24) in the inverse powers of ρ = (ξ − η)/2 and calculate the integrals using the following
identity (see the appendix in [9] for the derivation):∫ t+r

t−r

dξ
P�(μ)

(ξ − η)n
= (−1)l

2(n − 2)�

(2� + 1)!!

r�+1(t − η)n−�−2

[(t − η)2 − r2]n−1
F

(
�+2−n

2 , �+3−n
2

� + 3/2

∣∣∣∣
(

r

t − η

)2
)

,

(25)

where (n − 2)� = (n − 2)(n − 3) · · · (n − � − 1).
Now, we return to the analysis of the second-order equations (18)–(20). Substituting the

outgoing solution (17) into (18) and integrating, we get

m2(t, r)
t>R= κ

∫ r

0

[
(a(�+1)(t − ρ))2 −

∑
1�k�2�+2

∑
0�n�k−1

× (� + n)2n(� + k − 1 − n)2(k−1−n)(�2 + � + (k − n)(n + 1))

k2k (k − 1 − n)! n!

× ∂ρ

a(�+1+n−k)(t − ρ) a(�−n)(t − ρ)

ρk

]
dρ, (26)

where we used that m2(t, r = 0) = 0, which follows from regularity of initial data at the origin
and (19). Here and in the following, we use repeatedly the fact that a(x) = 0 for |x| > R, R
being the radius of a ball on which the initial data (11) are supported. To describe the behavior
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of m2(t, r) along the lightcone, it is convenient to use the null coordinate u = t − r instead of
t, and rewrite (26) as

m2(u, r)
r+u>R= κ

[∫ ∞

u

(a(�+1)(s))2 ds − �2 + � + 1

2r
(a(�)(u))2

− �(� + 1)(�2 + � + 2)

4

a(�−1)(u)a(�)(u)

r2
+ O

(
1

r3

)]
. (27)

Next, using the gauge freedom to set β2(t, r = 0) = 0 and integrating equation (20), we get

β2(t, r)
t>R= 2κ

∫ r

0

1

ρ2

∫ ∞

t−ρ

(a(�+1)(s))2 ds dρ − κ

∫ r

0

[
(2�2 + 2� + 1)

(a(�)(t − ρ))2

ρ3

+
�(� + 1)(3�2 + 3� + 2)

2

a(�−1)(t − ρ)a(�)(t − ρ)

ρ4
+ O

(
1

ρ5

)]
dρ. (28)

The first integral can be integrated by parts giving

β2(u, r)
r+u>R= 2κ

[
−1

r

∫ ∞

u

(
a(�+1)(s)

)2
ds +

∫ ∞

u

(a(�+1)(s))2

r − (s − u)
ds

]

− κ

∫ ∞

u

[
(2�2 + 2� + 1)

(a(�)(s))2

(r − (s − u))3

+
�(� + 1)(3�2 + 3� + 2)

2

a(�−1)(s)a(�)(s)

(r − (s − u))4

]
ds + O

(
1

r5

)
. (29)

4. Tails

Now, we shall apply the method described above to compute the late-time asymptotics of
solutions in the third-order approximation. Hereafter, it is convenient to define the following
integrals (for non-negative integers m, n):

Im
n (u) =

∫ ∞

u

(s − u)m(a(n)(s))2ds. (30)

4.1. � = 1

From (29) we have

β2(u, r)
r+u>R= κ

r2

[
2I 1

2 (u) +
1

r

(
2I 2

2 (u) − 5I 0
1 (u)

)
+ O

(
1

r2

)]
, (31)

β̇2(u, r)
r+u>R= − κ

r2

[
2I 0

2 (u) +
1

r

(
4I 1

2 (u) − 5(a′(u))2
)

+ O
(

1

r2

)]
, (32)

β ′
2(u, r)

r+u>R= κ

r2

[
2I 0

2 (u) − 5

r
(a′(u))2 + O

(
1

r2

)]
. (33)

Substituting (17) and (31)–(33) into (24) we obtain

F3(t, r) = 4κ

r

∫ +∞

−∞
dη

∫ t+r

t−r

dξ
P1(μ)

(ξ − η)2

[
d

dη

(
I 1

2 (η)a′′(η)
)

− 1

ξ − η

(
I 1

2 (η)a′(η) − d

dη
U1(η)

)
+ O

(
1

(ξ − η)2

)]
, (34)

5
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where

U1(η) = 4I 1
2 (η)a′(η) +

(
2I 2

2 (η) − 5I 0
1 (η)

)
a′′(η). (35)

Performing the inner integral over ξ in (34) with the help of the identity (25) we get the
asymptotic behavior which is valid for large retarded times u :

F3(t, r) = r

(t2 − r2)2

[
κA1 + O

(
t

t2 − r2

)]
, (36)

where

A1 = 8

3

∫ +∞

−∞
(a′′(s))2a(s) ds. (37)

From (36), we obtain the late-time tails in both asymptotic regimes: F3(t, r) � κA1rt
−4 at

future timelike infinity (r = const, t → ∞) and (rF3)(v = ∞, u) � κA1(2u)−2 at future null
infinity (v = ∞, u → ∞).

4.2. � � 2

We give the detailed calculation only for � = 2. In this case, we have from (29)

β2(u, r)
r+u>R= κ

r2

[
2I 1

3 (u) +
1

r

(
2I 2

3 (u) − 13I 0
2 (u)

)
+

1

r2

(
2I 3

3 (u) − 39I 1
2 (u) + 30(a′(u))2

)
+ O

(
1

r3

)]
, (38)

β̇2(u, r)
r+u>R= − κ

r2

[
2I 0

3 (u) +
1

r

(
4I 1

3 (u) − 13(a′′(u))2
)

+
1

r2

(
6I 2

3 (u) − 39I 0
2 (u) − 60a′(u)a′′(u)

)
+ O

(
1

r3

)]
, (39)

β ′
2(u, r)

r+u>R= κ

r2

[
2I 0

3 (u) − 13

r
(a′′(u))2 − 60

r2
a′(u)a′′(u) + O

(
1

r3

)]
. (40)

Substituting (17) and (38)–(40) into (24) we obtain

F3(t, r) = 4

r

∫ +∞

−∞
dη

∫ t+r

t−r

dξ
Pl(μ)

(ξ − η)2

[
κ

d

dη

(
I 1

3 (η)a(3)(η)
)

+
κ

ξ − η

×
(

−5I 0
3 (η)a′′(η) +

d

dη
U2(η)

)
+

4

(ξ − η)2

(
(a′′(η))3 + 2κ

(
2(a′′(η))3

− 3(a(3)(η))2a(η) +
1

8

d

dη
V2(η)

))
+ O

(
1

(ξ − η)3

) ]
, (41)

where

U2(η) = 8I 1
3 (η)a′′(η) +

(
2I 2

3 (η) − 13I 0
2 (η)

)
a(3)(η) (42)

and

V2(η) = −24I 0
3 (η)a(η) + 36I 1

3 (η)a′(η) +
(−117I 0

2 (η) + 18I 2
3 (η)

)
a′′(η)

+
(−78I 1

2 (η) + 4I 3
3 (η) + 60(a′(η))2

)
a(3)(η). (43)

6
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Performing the inner integral over ξ in (41) with the help of the identity (25) we get the
asymptotic behavior for large retarded times:

F3(t, r) = r2

(t2 − r2)3

[
κA2 + B2 + O

(
t

t2 − r2

)]
, (44)

where

A2 = 128

15

∫ +∞

−∞
[2(a′′(s))3 − 3(a(3)(s))2a(s)] ds and B2 = 64

15

∫ +∞

−∞
(a′′(s))3 ds. (45)

For the general � it is easy to see that the first nonzero contribution to the tail comes from the
term with n = � + 2 in the identity (25) which gives the following asymptotics:

F3(t, r) = r�

(t2 − r2)�+1

[
κA� + B� + O

(
t

t2 − r2

)]
. (46)

Formula (46) gives the first term in the asymptotic series approximation of the solution for
late retarded times, that is for small ε we have

(t2 − r2)�+1

r�
|F(t, r) − ε3F3(t, r)| = O(ε5). (47)

We have not attempted to derive a general formula for the coefficients A� and B�—the
computation of these coefficients for each given � is straightforward but as � increases the
algebra becomes tedious since it involves high-order expansions of the metric functions along
the light cone. Anyway, it follows from (46) that the tail behaves as F3(t, r) ∼ r�t−(2�+2) at
future timelike infinity and as (rF3)(v = ∞, u) ∼ u−(�+1) at future null infinity.

Remark 1. For � � 2 the tail (46) has two parts quantified by the coefficients κA� and B�,
respectively. The A�-part comes from the gravitational self-interaction of the wave map and
vanishes for κ = 0. The B�-part comes from the cubic nonlinearity of the wave map equation
and is present without gravity as well. The case � = 1 is special in the sense that the B�-part is
absent in (36) since it is subdominant (decaying as t−5) with respect to the leading order term.

Remark 2. It is instructive to compare the tail (46) with the tail for a test linear massless field
propagating on a fixed stationary asymptotically flat background. According to the Price law
[10–12] the �th multipole of this linear tail φ�(t, r) ∼ r�t/(t2 − r2)�+2 for t − r → ∞. This
decay is by one power faster than that in (46). Of course, this difference is not very surprising
as the tail studied here and Price’s tail correspond to different physical situations; however,
we point it out as another example of the inapplicability of linearized theory in the study of
radiative relaxation processes (see [13, 14] for other examples). We shall discuss this issue in
more detail elsewhere [15].

Remark 3. It is worth stressing that formula (46) does not apply to the case � = 0
corresponding to the massless scalar field which decays as t/(t2 − r2)2 [1].

5. Numerics

In this section, we compare the above analytic predictions with the results of numerical
solutions of the Einstein wave map equations (7)–(10) for various initial data. The details of
the numerical method were given in [1] for the case � = 0. The only difference for higher �

is the boundary condition F(t, r) ∼ r� for small r which guarantees regularity at the origin.
The initial data were generated by the Gaussian

εa(x) = ε exp(−x2) (48)

7
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Figure 1. Left panel: the log–log plot of F(t,r) for fixed r = 5. Fitting (51) we get power-law
exponents γ = −4.0196 (� = 1), −6.0009 (� = 2), −8.0049 (� = 3), in agreement with the
analytic prediction (46). Right panel: the log–log plot of F(t, r)/r� for fixed large advanced time
v = t + r = 1200 as the function of retarded time u = t − r . The analogous fit to (51) yields the
exponents −2.0036 (� = 1), −3.0004 (� = 2), −4.0095 (� = 3), in accordance with (46). In both
panels κ = 0.02 and ε = 2.0 (� = 1), ε = 0.7 (� = 2), ε = 0.3 (� = 3).

Table 1. The comparison of analytic and numerical amplitudes of the tails at timelike infinity.
Here κ = 0.02 and r = 5. The third-order approximation reads A = ε3κrA1 for � = 1 and
A = ε3r2(κA2 + B2) for � = 2.

A(� = 1) A(� = 2)

ε Theory Numerics ε Theory Numerics

0.05 9.096 × 10−5 9.051× 10−5 0.05 −0.072 77 −0.072 74
0.1 7.277× 10−4 7.289× 10−4 0.1 −0.582 16 −0.584 76
0.4 0.046 57 0.047 01 0.2 −4.657 27 −4.6841
0.8 0.372 58 0.374 14 0.4 −37.2582 −37.3778
2.4 10.0597 10.0299 0.65 −159.875 −160.441
3.2 23.8452 16.0528 0.7 −199.681 −189.377
3.8 39.9303 19.6931 0.75 −245.598 −189.792

for different values of ε. For these initial data, formula (37) gives for � = 1

A1 = 64

27

√
3π ≈ 7.2769, (49)

and formula (45) gives for � = 2

A2 = −10240

81

√
3π ≈ −388.1, B2 = −2048

405

√
3π ≈ −15.52. (50)

In order to extract the parameters of the tails at timelike infinity, we fit our numerical data with
the formula

F(t, r) = Atγ exp(B/t + C/t2). (51)

The results and their confrontation with analytic predictions are summarized in table 1
and figures 1, 2 and 3. From this comparison we conclude that the third-order approximation
is excellent for sufficiently small initial data. For large data approaching the black-hole
threshold the third-order approximation breaks down—this is seen in figure 2 as the deviation
from the scaling A ∼ ε3 and in figure 3 as the deviation from the linear dependence of A on κ .
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Figure 2. The log–log plot of the amplitude of the tail at timelike infinity as a function of the
amplitude of initial data (black dots) for fixed κ = 0.02 and r = 5. The third-order approximation
(dashed line) is excellent for small data, but it breaks down for large data lying near the threshold
of black hole formation.

0

0.005

0.01

0.015

0.02

0 1 2 3 4 5

A

κ

l=1

numerics
3-order approximation

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2

A

κ

l=2

numerics
3-order approximation

Figure 3. The plot of the amplitude of the tail at timelike infinity as a function of the coupling
constant κ (black dots) for fixed ε = 0.05 and r = 5. As κ increases we leave the small-data
regime and consequently the third-order approximation (dashed line) deteriorates.

It should be emphasized that we get the same decay rates t−(2�+2) (at timelike infinity) and
u−(�+1) (at null infinity) for all subcritical evolutions, regardless of whether our third-order
formula reproduces accurately the amplitude of the tail (for small data) or fails (for large data).
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