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Abstract
We discuss some aspects of higher-dimensional gravitational solitons and kinks,
including in particular their stability. We illustrate our discussion with the
examples of (non-BPS) higher-dimensional Taub–NUT solutions as the spatial
metrics in (6 + 1) and (8 + 1) dimensions. We find them to be stable against
small but non-infinitesimal disturbances, but unstable against large ones, which
can lead to black-hole formation. In (8 + 1) dimensions we find a continuous
non-BPS family of asymptotically-conical solitons connecting a previously-
known kink metric with the supersymmetric A8 solution which has Spin(7)
holonomy. All the solitonic spacetimes we consider are topologically, but not
geometrically, trivial. In an appendix we use the techniques developed in the
paper to establish the linear stability of five-dimensional Myers–Perry black
holes with equal angular momenta against cohomogeneity-2 perturbations.

PACS numbers: 04.50.+h, 11.27.+d

1. Introduction

1.1. Gravitational solitons and kinks

By analogy with other areas of physics, a gravitational soliton in n spacetime dimensions
may be defined to be an everywhere complete non-singular globally stationary Lorentzian
spacetime M, satisfying the vacuum Einstein equations [1]6. Thus a gravitational soliton has
by definition neither an event horizon nor an ergo-sphere and should therefore be distinguished
from a stationary or static black hole, which is only required to be non-singular outside a regular
event horizon. For conventional solitons in flat space, one usually adds as a requirement that
the solution not only be non-singular, but also have finite total energy. Furthermore, this energy

6 In this paper, we shall be concerned only with the case of vanishing cosmological constant although many of the
ideas go through in the case that the cosmological constant is negative.
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is determined by the conserved charges the soliton may carry and also by quantities specifying
asymptotic boundary conditions. Thus, for example, a magnetic monopole in Yang–Mills
theory has a mass determined by its magnetic charge and by the vacuum expectation value of
the Higgs field at infinity.

There are no gravitational solitons without horizons in four spacetime dimensions but in
higher dimensions such objects do exist: perhaps the best-known example being the Kaluza–
Klein monopole in five dimensions [2, 7]. This has a metric of the form

dŝ2
5 = −dt2 + ds2

4 , (1)

where ds2
4 is the self-dual Taub–NUT gravitational instanton metric. This four-dimensional

metric is asymptotically locally flat, with a circle direction that stabilizes to a constant length
at a large distance. The Kaluza–Klein monopole, upon reduction along this circle to (3 + 1)

spacetime dimensions, has a finite ADM mass given by the length of the circle at infinity.

1.2. Vacuum interpolation

In common with many flat-space solitons, the Kaluza–Klein monopole may be thought
of as spatially interpolating between two inequivalent ‘vacua’ or ‘ground states’ of the
theory, namely the flat five-dimensional Minkowski spacetime E

4,1 near the origin, and the
compactified Kaluza–Klein ground state S1 × E

3,1 near infinity. This idea may be made more
concrete by considering the U(2) isometry group of the solution. Near infinity, the generator
of the U(1) factor is distinguished by the fact that its length tends to a constant. This allows
a Kaluza–Klein-type reduction. At the origin, the lengths of all of the generators of the U(2)

isometry group go to zero. None is singled out. Geometrically, U(2) acts near the origin
precisely as it does near the origin of flat four-dimensional space, considered as a subgroup
of SO(4). Thus in the neighbourhood of the origin, it makes no sense to perform a Kaluza–
Klein reduction, and this neighbourhood is best thought of as a subset of five-dimensional
Minkowski spacetime.

If a solitonic solution of the Einstein equations exhibits vacuum interpolation, it seems
reasonable to refer to it also as a gravitational kink7.

Again by analogy with other areas of physics, one does not expect to find an asymptotically
flat gravitational soliton, i.e. one which outside a compact spatial set or world tube tends to
the flat metric on an n-dimensional Minkowski spacetime E

n−1,1. This is because it would
interpolate between two copies of the same vacuum. Indeed, as we shall see shortly, this
intuitive expectation is borne out by a no-go theorem. Thus with respect to the flat Minkowski
vacuum E

n−1,1, one cannot think of a gravitational soliton as having finite energy with respect
to the flat Minkowski vacuum. Nevertheless, with respect to the ground state near infinity it
may well have finite energy.

Vacuum interpolation also occurs in the case of extreme black holes or extreme black
p-branes. Again, this is between different kinds of ground states; typically between a flat
vacuum at infinity, and a compactified AdSp+2 × K , where K is an (n − p − 2)-dimensional
compact manifold [5].

1.3. Classical stability

The definition given above does not specify whether a gravitational soliton should be stable.
That is deliberate, because although to be important as a potentially long-lived classical

7 Note that the use of the word kink here should be distinguished from the notion of the ‘kink number’ of a Lorentzian
metric with respect to some hypersurface, introduced by Finkelstein and Misner [3], and elaborated upon in [4].
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‘lump’, to use Coleman’s phrase [6], a gravitational soliton should at least be classically stable
against small but non-infinitesimal disturbances (i.e. not merely linearized fluctuations). It
is not reasonable, however, to demand classical stability, in any gravitational theory, against
all possible large (but nevertheless finite total energy) disturbances, since nothing forbids
gravitational collapse to a black hole with the same asymptotics. After all, even Minkowski
spacetime is unstable against the possibility of a concentrated region of gravitational waves
undergoing gravitational collapse to a black hole. Indeed in a recent numerical study of
the dynamics of Kaluza–Klein monopoles [10], precisely such a collapse was seen to occur.
This phenomenon, i.e. the instability under large but finite energy deformations of a solution
that is infinitesimally stable, is characteristic of gravitation and the possibility of black-hole
formation. It should be contrasted with the behaviour of classical Yang–Mills or Yang–
Mills–Higgs theory in which monopole solutions are stable against arbitrarily large finite-
energy deformations. The possibility of black-hole formation, and the resulting spacetime
singularities, invalidate the type of topological stability criteria derived from cobordism theory
that were discussed in [11].

Both Minkowski spacetime and the Kaluza–Klein monopole are supersymmetric, or BPS.
Thus these two examples clearly demonstrate the fallacy of the widespread belief that to prove
stability in general relativity it suffices to establish that the spacetime admits a Killing spinor8.

The singularity theorems of classical general relativity show that these black holes contain
spacetime singularities, which are a clear indication that the classical theory is incomplete. If
these singularities are hidden inside event horizons, i.e. if cosmic censorship holds, they may
not be an obstacle to studying the evolution of the exteriors of black holes. However, such
black holes do not have a fixed mass, and may grow by, for example, absorbing radiation.
Thus, in general, black holes cannot be thought of as solitons. An exception may arise if
one considers so-called extreme black holes, in which the mass may be determined entirely
in terms of conserved charges [12]. We shall not discuss this type of ‘solitonic’ black hole
further in this paper.

1.4. Quantum stability

The stability considerations described above were purely classical. Quantum mechanically,
black holes are unstable against thermal Hawking radiation. Thus in the case of the collapsed
Kaluza–Klein monopole, it seems very likely that the ultimate quantum-mechanical state is
the monopole itself, since the magnetic charge cannot be radiated away.

If, as is currently widely believed, the evaporation of neutral black holes leads to their
complete disappearance, it would seem that Hawking evaporation is essential in order to solve
the problem of classical singularities.

A frequently used criterion for the stability of a particle in quantum mechanics is that
it has the least mass of any state carrying the same conserved charges. This criterion, often
associated with BPS bounds, is often used to argue that various solitons, or indeed ground
states, are stable. In the case of spacetimes, what is often in one’s mind is quantum tunnelling.
While it is certainly true that a BPS condition, or the existence of a Killing spinor, may mean
that tunnelling is impossible, it does not rule out the sort of classical instabilities we discussed
previously.

8 Quite apart from the nonlinear instabilities involving black-hole formation, further instabilities of Minkowski
spacetime, or indeed any asymptotically flat spacetime, can arise unless one restricts attention to perturbations or
deformations that decay at large distances. The example of Kasner spacetime clearly shows that flat space is unstable
to the formation of all-encompassing naked singularities in finite time, if one allows perturbations that do not decay
near infinity.
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1.5. Ultra-staticity

The main subject of the present paper is the case of gravitational solitons in nine spacetime
dimensions. This dimension is large enough to admit a rather richer structure of solitonic
solutions than can be obtained in lower dimensions. Before describing our new results
however, it may be useful to continue the general discussion, making it a little more precise.
In particular we wish to establish the general result that a gravitational soliton, as we have
defined it, must be ultra-static, i.e. the (unwarped) product M = R×� of time with a complete
non-singular Ricci flat spatial Riemannian (n − 1)-manifold �.

The assumption of global stationarity means that the spacetime is an R-bundle over � the
space of orbits of time translations. The metric may thus be cast in the form

ds2 = −V 2(dt + ωi dxi)2 + gij dxi dxj (2)

where i = 1, 2, . . . , n − 1, and the everywhere non-vanishing strictly positive function V

and the Sagnac R-connection ωi dxi are independent of time. The curvature of the Sagnac
connection is given by

Fij = ∂iωj − ∂jωi. (3)

We begin by noting that the vacuum Einstein equations imply that

∇i (V
3F ij ) = 0. (4)

Multiplication by ωj and integration by parts gives

1

2

∫
�

V 3FijF
ij√g dn−1x =

∫
∞

V 3ωjF
ij dσi. (5)

If the boundary term at infinity vanishes, then we conclude that

Fij = 0. (6)

The Einstein equations then imply

∇2V = 0. (7)

Thus if V is bounded at infinity, a standard argument based on the maximum principle shows
that

V = constant. (8)

The remaining Einstein equation then implies that the spatial metric gij is Ricci flat

Rij = 0. (9)

If we assume that � is simply connected, or pass to a finite covering space if it is not, we may
set ωi = 0, V = 1 and the metric is ultra-static

ds2 = −dt2 + gij dxi dxj . (10)

It follows from (10) that the question of the existence of gravitational solitons reduces
completely to that of the existence of complete Ricci-flat spatial manifolds {�, gij }. It is known
[9] that there are no non-trivial asymptotically Euclidean9 metrics, and hence no asymptotically
flat gravitational solitons but there are plenty of metrics which are asymptotically locally
Euclidean10 as well as metrics with much more complicated asymptotics.

9 That is which tend to the flat metric on (n − 1)-dimensional Euclidean space E
n−1 outside a compact set.

10 That is which tend to the flat metric on E
n−1/�, � ⊂ O(n − 1) outside a compact set.
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1.6. BPS solitons

Among the various possibilities for the Ricci-flat spatial metric, of particular interest are those
admitting a covariantly constant spinor. They have reduced holomony, and if n < 12, the spinor
field is a Killing spinor of a supergravity theory and the solitons are thus supersymmetric.
The existence of the Killing spinor allows one to relate the spectrum of the Lichnerowicz
operator acting on symmetric traceless second-rank tensors to the spectrum of other differential
operators. In this way, one may establish the linearized stability of solitons with special
holonomy. For example, a metric with Spin(7) holonomy admits a covariantly constant self-
dual 4-form. This 4-form may be used [20] to establish a 1–1 correspondence between the
spectrum of the Lichnerowicz operator and the spectrum of the Hodge de-Rham operator
acting on anti-self-dual 4-forms. Since the spectrum of the latter is manifestly non-negative,
it follows that the Lichnerowicz operator has no modes of negative eigenvalue, and hence that
Spin(7) solitons are stable at the linearized level. However, as we discussed earlier, they will
not be stable against deformations sufficiently large that collapse to black holes takes place.
Similar remarks about linearized stability apply to the other cases of special holonomy, which
are as follows:

• Ricci–flat Kähler or Calabi–Yau with holonomy SU(k) ⊂ SO(2k) and thus n = 2k + 1,
• hyper-Kähler with holonomy Sp(k) ⊂ SO(4k) and thus n = 4k + 1,
• holonomy G2 ⊂ SO(7) and thus n = 8,
• holonomy Spin(7) ⊂ SO(8) and thus n = 9.

Explicit complete non-singular metrics are known in all cases. The easiest examples to
construct are cohomogeneity one and are asymptotically conical (AC); they tend to Ricci-flat
cones over Einstein manifolds which are:

• holonomy SU(k) ⊂ SO(2k): Einstein–Sasaki,
• holonomy Sp(k) ⊂ SO(4k): Einstein–tri-Sasaki,
• holonomy G2 ⊂ SO(7) : weak SU(3),
• holonomy Spin(7) ⊂ SO(8): weak G2.

Other explicit cohomogeneity one examples have been found which are asymptotically
locally conical (ALC). In this case a circle subgroup of the isometry group has orbits which tend
to constant length at infinity. The ur-example is the Taub–NUT metric, i.e. the Kaluza–Klein
monopole.

1.7. Cohomogeneity one and cohomogeneity two

In this paper, we shall restrict attention to complete Ricci flat (n − 1)-dimensional positive
definite metrics which are of cohomogeneity one, that is whose isometry group G has principal
orbits which are (n − 2) dimensional. Such solutions give rise to static solitons on n-
dimensional Lorentzian spacetime obtained by taking the metric product with time. The
isometry group of the n-dimensional static spacetime is therefore the product R × G.

We then construct a consistent time-dependent ansatz for the n-dimensional spacetime,
which is invariant under just the action of the original group G, and which agrees with the
static soliton solution in the special case that there is no time dependence. The general time-
dependent Lorentzian spacetime is thus of cohomogeneity two. The word ‘consistent’ means
that every solution of the resulting system of (1 + 1)-dimensional equations gives a solution
of the n-dimensional vacuum Einstein equations.

The reason for restricting to cohomogeneity one and cohomogeneity two is not only for
simplicity but because it allows us to exploit the considerable body of existing information in
the literature on cohomogeneity-one Ricci-flat metrics.
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We shall also mainly concentrate on the case when the spatial manifold is topologically,
but not geometrically R

n.

2. Higher-dimensional time-dependent Taub–NUT solitons

One may consider a variety of higher-dimensional static metrics of the form dŝ2 = −dt2 +ds2,
where ds2 is a Ricci-flat spatial soliton metric. Then, following the same strategy as in
[10], these metrics may be used to provide initial data for the time-dependent vacuum
Einstein equations. Following the discussion in [10], we shall consider the higher-dimensional
analogues [13, 14] of the four-dimensional self–dual Taub–NUT metric. It should be noted,
however, that these higher-dimensional analogues are non-supersymmetric, in the sense that
unlike the four-dimensional Taub–NUT case, there is no Killing spinor. We shall discuss the
examples of the Taub–NUT metrics in six and eight dimensions below, after first presenting a
general time-dependent ansatz.

2.1. The time-dependent ansatz

A suitably general time-dependent ansatz for our purposes is

dŝ2 = −A e−2δ dt2 + A−1 dr2 + r2
[
e3B d�2

m + e−6mBσ 2
]
, (11)

where d�2
m is the metric on an Einstein–Kähler space of real dimension 2m, normalized so

that it satisfies Rab = 2(m + 1)gab. The 1-form σ is given by σ = dψ + B, where B is a
potential on the Einstein–Kähler base space, such that dB = 2J , where J is the Kähler form.
The total dimension of the spacetime is D = 2m + 3.

Special cases of (11) include, if e2δ = A and the metric is assumed to be independent of
time, the Taub–NUT solitons. For these solutions, the Einstein–Kähler base spaces are taken
to be CP

m. Other important special cases are the higher-dimensional Kerr and Kerr–AdS
metrics. In the case of (2m + 3) dimensions, with all rotation parameters set equal, these have
cohomogeneity one, and their stability can be analysed by a small extension of our procedure
in which the Kaluza–Klein vector is retained also in the reduction. This is discussed in the
appendix.

The time-dependent Einstein equations R̂MN = 2(m + 1)λĝMN for the metric (11) break
up into momentum and Hamiltonian constraint equations

A′ = −2mA

r
+

2m

(2m + 1)r
[2(m + 1) e−3B − e−6(m+1)B ] − 9

2
mr(e2δA−1Ḃ2 + AB ′2)

− c2

2(2m + 1)
r−4m−3 e6mB − 2(m + 1)λr, (12)

Ȧ = −9mrAḂB ′,

a slicing condition

δ′ = − 9
2mr(e2δA−2Ḃ2 + B ′2), (13)

and a wave equation

(eδA−1r2m+1Ḃ). − (e−δAr2m+1B ′)′ +
4(m + 1)

3(2m + 1)
e−δr2m−1(e−3B − e−6(m+1)B)

+
c2

2(2m + 1)
r−2m−3 e−δ e6mB = 0. (14)
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If we define a mass functional M(r, t), by writing A = 1 − M(r, t)/r2m − λr2, then the
Hamiltonian constraint becomes

M ′ = 9

2
mr2m+1(e2δA−1Ḃ2 + AB ′2) +

c2

2(2m + 1)
r−2m−3 e6mB

+
2m

2m + 1
r2m−1[(2m + 1) + e−6(m+1)B − 2(m + 1) e−3B ]. (15)

Note that the right-hand side is manifestly positive.
In what follows, we shall specialize to the case of the vacuum Einstein equations, by

setting λ = 0.

2.2. The (6 + 1)-dimensional Taub–NUT soliton

The spatial metric of the time-independent (6 + 1)-dimensional Taub–NUT soliton is given by

ds2
6 = (ρ + 
)2 dρ2

2(ρ − 
)(ρ + 3
)
+

2
2(ρ − 
)(ρ + 3
)

(ρ + 
)2
σ 2 + (ρ2 − 
2) d�2

2 , (16)

with ρ � 
, where the notation for σ and d�2 here is the same as in (11). One can see that
the metric near ρ = 
 approaches the origin of hyperspherical coordinates in R

6, by defining
a new radial coordinate y = √

2
(ρ − 
). At large ρ, the metric approaches R
5 times a circle

of asymptotic radius
√

2
. The manifold on which (16) is defined has the topology of R
6.

Comparing with ansatz (11), with m = 2, we see that the six-dimensional Taub–NUT
metric gives initial data with

e−15B0 = 2
2(ρ + 3
)

(ρ + 
)3
, A0 = 2(ρ + 3
)(ρ − 
)

(ρ + 
)2

(
dr

dρ

)2

, e2δ0 = A0, (17)

where

r10 = 2
2(ρ − 
)5(ρ + 
)2(ρ + 3
). (18)

2.3. The (8 + 1)-dimensional Taub–NUT soliton

The spatial metric of the time-independent (8 + 1)-dimensional Taub–NUT soliton is given by

ds2
8 = 5(ρ + 
)3 dρ2

8(ρ − 
)(ρ2 + 4
ρ + 5
2)
+

8
2(ρ − 
)(ρ2 + 4
ρ + 5
2)

5(ρ + 
)3
σ 2 + (ρ2 − 
2) d�2

3 , (19)

with ρ � 
. It is defined on the manifold R
8.

Comparing with (11) with m = 3, we see that the eight-dimensional Taub–NUT metric
gives initial data with

e−21B0 = 8
2(ρ2 + 4
ρ + 5
2)

5(ρ + 
)4
, A0 = 8(ρ − 
)(ρ2 + 4
ρ + 5
2)

5(ρ + 
)3

(
dr

dρ

)2

,

e2δ0 = A0, (20)

where

r14 = 8
5
2(ρ + 
)3(ρ − 
)7(ρ2 + 4
ρ + 5
2). (21)

As we shall see below this solution is a special case of a more general ansatz.
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3. Nine-dimensional squashed 7-sphere solitons

Our previous ansatz (11) was based on the Hopf fibring of S2m+1 by U(1) Hopf fibres over a
CP

m base manifold11. In the case where m = 2p, one can instead consider S4p+3 regarded
as an SU(2) bundle over HP

p. The simplest case is for p = 1, with S7 regarded as an
SU(2) bundle over S4. In this section, we shall consider a time-dependent ansatz for an
(8 + 1)-dimensional time-dependent metric where the spatial 8-metric has surfaces at constant
radius that have S7 topology, fibred by S3. Two deformation parameters will be included,
one parameterizing the volume of the S3 fibres and the other parameterizing a homogeneous
squashing of the S3 fibres themselves.

We begin with some group-theoretic preliminaries, by considering left-invariant 1-forms
LAB for SO(5), These obey LAB = −LBA and

dLAB = LAC ∧ LCB. (22)

We take the SO(5) indices to range over 0 � A � 4 and split them as A = (a, 4), with
0 � a � 3. The SO(4) 1-forms Lab are then expressed in an SU(2)L × SU(2)R basis with
generators

Ri = 1
2

(
L0i + 1

2εijkLjk

)
, Li = 1

2

(
L0i − 1

2εijkLjk

)
, (23)

where 1 � i � 3. The S7 = SO(5)/S0(3) coset is then spanned by the 1-forms

Ri, Pa ≡ 1
2La4. (24)

(Note a rescaling of Pa , relative to [16]. This is done for convenience to avoid factors of 2
later.) The algebra of the 1-forms is easily seen to be

dRi = −εijkRj ∧ Rk − J i
abPa ∧ Pb,

dPa = J i
abRi ∧ Pb + J̃ i

abLi ∧ Pb, (25)

dLi = εijkLj ∧ Lk − J̃ i
abPa ∧ Pb,

where we have defined antisymmetric self-dual and anti-self-dual ’t Hooft tensors J i
ab and J̃ i

ab

by

J i
0j = δi

j , J i
jk = εijk,

J̃ i
0j = δi

j , J̃ i
jk = −εijk.

(26)

The metric on the unit round S7 is given by

d�2
7 = R2

i + P 2
a . (27)

Our general time-dependent ansatz is

dŝ2
9 = −A e−2δ dt2 + A−1 dr2 + r2

{
e−4B

[
e2C

(
R2

1 + R2
2

)
+ e−4CR2

3

]
+ e3BP 2

a

}
. (28)

Straightforward calculations show that the Ricci-flatness of dŝ2
9 implies the following

equations. First, we have the Hamiltonian and momentum constraints

A′ = −6

r
A − 6r

7
A

[
7

2
(B ′2 + e2δA−2Ḃ2) + (C ′2 + e2δA−2Ċ2)

]
+

2

7r
[−e4B−8C + 4 e4B−2C − 4 e−10B+2C − 2 e−10B−4C + 24 e−3B ], (29)

Ȧ = −6rA

(
ḂB ′ +

2

7
ĊC ′

)
. (30)

11 Or fibrations over more general Einstein–Kähler base manifolds.
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In addition, there is the slicing constraint

δ′ = −3r
[
(B ′2 + e2δA−2Ḃ2) + 2

7 (C ′2 + e2δA−2Ċ2)
]
. (31)

Finally, we have the dynamical equations for the two squashing modes, which give

eδ(eδA−1r7Ḃ)̇ − eδ(e−δAr7B ′)′ − 4r5

21
(−e4B−8C + 4 e4B−2C

+ 10 e−10B+2C + 5 e−10B−4C − 18 e−3B) = 0, (32)

eδ(eδA−1r7Ċ)̇ − eδ(e−δAr7C ′)′ +
4r5

3
(−e4B−8C + e4B−2C + e−10B+2C − e−10B−4C) = 0. (33)

It can be straightforwardly verified that the constraints are indeed consistent with the dynamical
equations of motion.

As a check, it can be verified that if we set C = 7
2B, for which the ansatz (28) reduces to

the special case of setting m = 3 and A = 0 in (11), i.e. describing a squashing of S7 viewed
as a U(1) bundle over CP

3, we indeed obtain the same equations as those given in section 2.1.
Another check is instead to set C = 0, in which case the system reduces to those discussed in
[17], where S7 is viewed as a round S3 bundle over S4.

3.1. Static solutions

In this section, we consider regular static asymptotically (locally) conical solutions of the
system (29)–(33). Note that in agreement with section 1.5 all static solutions are ultrastatic, i.e.,
A e−2δ = 1, thus equations (29)–(33) reduce to the following system of ordinary differential
equations:

eδ(eδr7B ′)′ +
4r5

21
(−e4B−8C + 4 e4B−2C + 10 e−10B+2C + 5 e−10B−4C − 18 e−3B) = 0, (34)

eδ(eδr7C ′)′ − 4r5

3
(−e4B−8C + e4B−2C + e−10B+2C − e−10B−4C) = 0. (35)

δ′ = −3r

(
B ′2 +

2

7
C ′2

)
. (36)

Regularity at the origin implies the following behaviour for r → 0:

B ∼ br2, C ∼ cr2, eδ = 1 − (
3b2 + 6

7c2
)
r4, (37)

where b and c are free parameters. Using scaling symmetry, without loss of generality, we
can set b = 1. Then, (37) gives rise to a unique one-parameter family of local solutions
parametrized by c. Numerical analysis shows that for any c in the interval 0 � c � 7/2,
these local solutions can be continued to infinity and thus give the desired global solutions
(see figure 1). For values of c outside this interval the solutions become singular for a finite
r. The asymptotic behaviour of global solutions near infinity depends on c: for 0 < c � 7/2
the squashing modes grow logarithmically and δ goes to minus infinity, while for c = 0 both
B and δ have finite limits. Thus unless c = 0, the space sections are asymptotically locally
conical, ALC, but in the limiting c = 0 case they become asymptotically conical (AC). For
two values of c the solutions are known in closed form: these are the Taub–NUT solution (19)
which corresponds to c = 7/2 and the so called A8 solution [15, 16] which corresponds to
c = 2.

Below we discuss in detail the structure of static solutions and their stability properties.
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Figure 1. Plot of C/B for static solutions for several values of the shooting parameter c. For
0 < c < 7/2 we have C ∼ 7

2 B − 1
2 ln 2 for r → ∞.

3.2. The Spin(7) background A8 (c = 2)

The A8 solution is an ultra-static nine-dimensional vacuum solution whose space sections are
asymptotically conical (AC)

ds2
9 = −dt2 + ds2

8 , (38)

where ds2
8 is a Ricci-flat metric with Spin(7) holonomy. A simple metric of this kind, which

extends smoothly onto a manifold of R
8 topology, was obtained in [15, 16], where it was

denoted by A8. In the normalization we are using here, it is given by

ds2
8 = (ρ + 
)2 dρ2

(ρ + 3
)(ρ − 
)
+ (ρ + 3
)(ρ − 
)

(
R2

1 + R2
2

)
+

4
2(ρ + 3
)(ρ − 
)

(ρ + 
)2
R2

3 + 2(ρ2 − 
2)P 2
a . (39)

The radial coordinate ρ lies in the range 
 � ρ � ∞. Near ρ = 
 we may define a new radial
coordinate y = 2

√
(ρ − 
)
, in terms of which the metric approaches

ds2
8 ∼ dy2 + y2

(
R2

i + P 2
a

)
(40)

at small y. At large distance, ρ → ∞, the metric approaches R
7 times a circle of asymptotic

radius 2
. The situation is therefore closely analogous to that of the self-dual Taub–NUT
metric in four dimensions.

Expressed in terms of the ansatz (28), the A8 solution has the form

e21B = 2(ρ + 
)5


2(ρ + 3
)3
, e−3C = 2


(ρ + 
)
,

A = (ρ + 3
)(ρ − 
)

(ρ + 
)2

(
dr

dρ

)2

, e2δ = A,

(41)

where

r14 = 64
2(ρ + 3
)3(ρ − 
)7(ρ + 
)2. (42)
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3.3. The continuous family of solutions (0 < c � 7/2)

We define the new independent variable τ by reδ d/dr = d/dτ and let x = B and y =
√

2
7C.

Then, assuming staticity, equations (34) and (35) take the form

d2x

dτ 2
+ 6 eδ dx

dτ
+

∂V

∂x
= 0,

d2y

dτ 2
+ 6 eδ dy

dτ
+

∂V

∂y
= 0, (43)

where

V (x, y) = 1
21

(−e4x−4
√

14y + 4 e4x−√
14y − 4 e−10x+

√
14y − 2 e−10x−2

√
14y + 24 e−3x

)
, (44)

and the slicing constraint (36) becomes

d

dτ
eδ = −3

((
dx

dτ

)2

+

(
dy

dτ

)2
)

. (45)

The boundary conditions (37) translate to the following asymptotic behaviour for τ → −∞:

x ∼ b e2τ , y ∼
√

2

7
c e2τ , eδ ∼ 1 − 3

(
b2 +

2

7
c2

)
e4τ . (46)

As above we set b = 1; hence, we have a one-parameter family of local solutions parametrized
by c.

It is useful to interpret the above system in terms of the mechanical analogy of a sticky
ball rolling on the surface z = V (x, y). (See figure 2.) Due to the friction the energy of the
ball,

E = 1

2

[(
dx

dτ

)2

+

(
dy

dτ

)2
]

+ V (x, y), (47)

decreases in time

dE

dτ
= −6 eδ

((
dx

dτ

)2

+

(
dy

dτ

)2
)

� 0. (48)

Note that the combinations of equations (45) and (48) together with the boundary conditions
(46) yield the constraint E = e2δ which can be used to eliminate eδ from equations (43).

Assuming that x and y are both positive and large we can solve equations (43)–(45)
asymptotically to get the following two possibilities:

(i) y ∼
√

7

2
x or (ii) y ∼

√
7

2
x − ln 2√

14
. (49)

Case (i) is exceptional and corresponds to the ball rolling down the ridge, while case (ii) is
generic and it corresponds to motion down the valley (on the left side of the valley there is a
ridge which separates it from a cliff and on the right side there is a steep ascent). In the second
case the asymptotic behaviour of solutions for τ → ∞ is

x ∼ 2

3
ln τ − 1

3
ln

(
245

10

)
, eδ ∼ 6

τ
. (50)

3.4. Stability of static solutions

The role of static solutions in dynamics depends on their stability properties. In this section,
we investigate the stability of static solutions presented above (0 < c � 7/2).
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Figure 2. The potential z = V (x, y) and three trajectories which start at the peak (1, 0, 0)

with different slopes (that is, different values of the parameter c). The black curve (c = 7/2)

represents the Taub–NUT solution, the dark blue curve (c < 7/2) represents a generic solution of
the continuous family and the red (circled) curve shows a singular trajectory with c > 7/2.

3.4.1. Linear stability. Following the standard procedure we seek solutions in the form

B(t, r) = B0(r) + B1(t, r), C(t, r) = C0(r) + C1(t, r), (51)

A(t, r) = A0(r) + A1(t, r), δ(t, r) = δ0(r) + δ1(t, r), (52)

where the index 0 denotes a static solution and the index 1 denotes a perturbation. We
substitute this expansion into equations (29)–(33) and linearize them. Integrating equation
(30) we obtain

A1 = −6rA0
(
B ′

0B1 + 2
7C ′

0C1
)
, (53)

and from equation (31) we get

δ′
1 = −6r

(
B ′

0B
′
1 + 2

7C ′
0C

′
1

)
. (54)

Inserting equations (53) and (54) into the linearized equations (32) and (33) and separating
the time dependence B1(t, r) = exp(−iλt)vλ(r), C1(t, r) = exp(−iλt)uλ(r), we get the
eigenvalue equation for the spectrum of small perturbations

− 1

r7
eδ0(eδ0r7Sλ)

′ + KSλ = λ2Sλ, (55)

where

Sλ =
(

vλ

uλ

)
(56)

and K is a 2 × 2 matrix determined by the static solution. The matrix K is very complicated
but fortunately we do not need it in an explicit form. To demonstrate stability we exploit the
existence of the zero mode

S0 = r

(
B ′

0(r)

C ′
0(r)

)
, (57)
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which is due to the scaling invariance of the problem. From the above heuristic analysis of
the behaviour of static solutions it is clear (although not proved rigorously) that the functions
B0(r) and C0(r) are monotone increasing, hence the components of the zero mode have no
zeros. Thus, it follows from the Sturm–Liouville theory that there are no negative eigenvalues.

We point out that in the case of the A8 manifold, the linearized stability of this solution
follows from the existence of a covariantly-constant spinor in the Spin(7) holonomy manifold
A8, as discussed in section 1.6. Specifically, the spectrum of the Lichnerowicz operator
describing transverse traceless metric perturbations is identical to the spectrum of the Hodge–
de Rham operator acting on anti-self-dual 4-forms [20], and thus there can be no negative-
eigenvalue modes and hence the solution is stable at the level of linearized perturbations.

3.4.2. Nonlinear stability. In order to verify numerically the nonlinear stability of static
solutions, we have expressed equations (29)–(33) in the first-order form using the momentum
variables

PB = eδA−1Ḃ, PC = eδA−1Ċ. (58)

We have solved the resulting equation system using the free evolution scheme in which the
function A(t, r) is updated from the momentum constraint (30). Integration in time is done by
the modified predictor–corrector McCormack method on a uniform spatial grid. The slicing
constraint (31) is solved with the fourth-order Runge–Kutta method. The whole procedure
is second-order accurate in time and fourth order in space. The results shown below were
produced for initial data of the form

B(0, r) = B0(r), C(0, r) = C0(r),

PB(0, r) = p
( r

R

)4
e− (r−R)4

s4 , PC(0, r) = 0,
(59)

where the amplitude p was varied and the parameters R and s were kept fixed. We have found
that for small perturbations, that is for small values of the control parameter p, the solution
returns to equilibrium and the excess energy of the perturbation is radiated away to infinity,
while for large perturbations a black hole forms. The behaviour is qualitatively the same for
all static solutions (independently of c) and we illustrate it in figures 3 and 4 in the case of the
A8 solution.

3.5. The eight-dimensional kink solution (c = 0)

In this section, we shall show the existence of a complete Ricci-flat 8-metric, which is
asymptotically conical (AC), which we shall call the kink. It may be considered as spatially
interpolating between flat Euclidean 8-space near the origin,

B = 0, C = 0, A = e2δ = 1, (60)

and the Ricci-flat cone over the Einstein-squashed 7-sphere at infinity,

B = ln 5

7
, C = 0, A = e2δ = 9 × 5−10/7. (61)

It was demonstrated in [18], at the numerical level, that there exists a complete and non-singular
metric that interpolates between these two constant solutions. It is defined on a manifold of
R

8 topology. Here, we present a sketch of a proof of the existence of this kink solution.
Repeating the steps from section 3.3 and setting y = 0 in equations (43)–(45), we obtain

the three-dimensional autonomous system
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t is central proper time). During the evolution A(t, r) drops to zero at r = rH ≈ 1.773 which
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d2x

dτ 2
+ 6 eδ dx

dτ
+

∂V

∂x
= 0, (62)

d

dτ
eδ = −3

(
dx

dτ

)2

, (63)

where

V = 1
7 (8 e−3x + e4x − 2 e−10x). (64)
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The boundary conditions (37) for τ → −∞ simplify to

x ∼ b e2τ , eδ ∼ 1 − 3b2 e4τ , (65)

hence up to scaling given by b we have a unique regular local solution.
As above, we can interpret this system in terms of the mechanical analogy of a ball rolling

in the potential V (x) with a variable friction (see figure 5). The energy of the ball

E = 1

2

(
dx

dτ

)2

+ V (x) (66)

decreases in time because

dE

dτ
= −6 eδ

(
dx

dτ

)2

� 0. (67)

As in the general case we have the constraint E = e2δ . Using this constraint we eliminate eδ

from equation (62) and get the autonomous two-dimensional dynamical system. This system
has two critical points that correspond to the constant solutions (60) and (61): the saddle
(x = 0, dx/dτ = 0) and the stable node

(
x = ln 5

7 , dx/dτ = 0
)
. The function e2δ serves as

the Lyapunov function, thus it is evident that the orbit starting from the saddle (0, 0) along
the unstable manifold will end up at the stable node ( ln 5

7 , 0) for τ → ∞. The linearization
around this critical point yields the following asymptotic behaviour for τ → ∞:(

x(τ) − ln 5
7

dx/dτ

)
= c1 eλ1τ ξ1 + c2 eλ2τ ξ2, (68)

where the eigenvalues are

λ1 = −8

5
× 52/7, λ2 = −2 × 52/7, (69)

and the corresponding eigenvectors are

ξ1 =
(

1
λ1

)
, ξ2 =

(
1
λ2

)
. (70)
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The kink orbit approaches the node ( ln 5
7 , 0) along the slow eigendirection ξ1. (See figure 6.)

We claim that the kink orbit stays for all times in the first quadrant of the (x, dx/dτ) plane. To
see this, consider an exceptional trajectory which approaches the node

(
ln 5
7 , 0

)
along the fast

eigendirection ξ2 (that is, c1 = 0 and c2 < 0 in equation (68)). This trajectory run backwards
in time from the node, obviously cannot cross the line x = ln 5

7 and consequently it prevents
the kink trajectory (which is trapped below the fast eigendirection trajectory) from doing so.
In terms of the mechanical analogue of a ball rolling in the potential V the above analysis
demonstrates that the motion of the ball is overdamped and moreover the ball rolling down
from the maximum of the potential at x = 0 cannot overshoot the minimum at x = ln 5

7 .

3.5.1. Analytic study of the kink solution. In this section, we describe an attempt to find
the kink solution in closed form. Although this attempt was not successful, we believe it is
worth presenting because it yields a deeper analytic insight into the structure of equations. In
addition, it provides an alternative way of proving the existence of the kink.

Consider the 8-metric

ds2
8 = dr2 + a2(σi − Ai)2 + b2 d�2

4, (71)

where d�2
4 is the metric on the unit 4-sphere, Ai is the 1-instanton solution on S4 and σi are

the left-invariant 1-forms of SU(2). The flat metric on R
8 corresponds to a = b = 1

2 r , in
which case the principal orbits are round 7-spheres for all values of r. In the kink solution,
which is easily found by numerically solving the Ricci-flat equations for the metric ansatz
(71), the metric approaches the flat form at small r, whilst as r goes to infinity the principal
orbits approach the squashed Einstein metric on S7, for which a2/b2 = 1/5. In fact, as r
approaches infinity the metric functions have the limiting forms

a −→ 3

10
r, b −→ 3

2
√

5
r. (72)

The nature of the numerical results can be seen in figure 7.
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written using the metric ansatz (71). The right-hand plot shows a2/b2, which ranges from 1 (the
round S7) at small r to 1/5 (the squashed Einstein S7) as r goes to infinity.

One can also attempt to solve analytically for the kink solutions. (Note that, up to scaling,
there is a unique such solution in each dimension D = 4n + 4.) Let us again consider the
eight-dimensional case and change variables so that (71) becomes

ds2
8 = e2ρ dρ2

h(ρ)
+ e2ρf (ρ)(σi − Ai)2 + e2ρ d�2

4. (73)

The specific choice of coordinate gauge in (73) is one that often allows one to obtain explicit
solutions in terms of rational functions of eρ .

In the present case, we find that the metric is Ricci-flat if

h = (1 + 8f − 2f 2)f

(8f 2 + 12f ḟ + ḟ
2
)

(74)

and the function f (ρ) satisfies the equation

2f (2f 2 − 8f − 1)f̈ + 3(f − 2)ḟ
3

+ 2(21f 2 − 34f + 2)ḟ
2

+ 12f (17f 2 − 26f + 2)ḟ + 56f 2(f − 1)(5f − 1) = 0, (75)

where a dot denotes a derivative with respect to ρ. This equation can be reduced to a single
first-order differential equation as follows. We define f (ρ) = x and ḟ (ρ) = y(x), which
implies

ρ =
∫ x dz

y(z)
, (76)

and (75) becomes

y ′ = 3(x − 2)y3 + 2(2x2 − 34x + 2)y2 + 12x(17x2 − 26x + 2)y + 56x2(x − 1)(5x − 1)

2x(1 + 8x − 2x2)y
,

(77)

where the prime denotes a derivative with respect to x. Note that x is the squashing parameter,
ranging from x = 1 near the origin of the kink, where the 7-spheres are round, to x = 1/5
in the asymptotic region near infinity, where the 7-spheres approach the squashed Einstein
metric. The function h appearing in the metric (73) is given by

h = x(1 + 8x − 2x2)

8x2 + 12xy + y2
. (78)
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0.2 0.4 0.6 0.8

-2.5

-2

-1.5

-1

-0.5

0.2 0.4 0.6 0.8

-0.3

-0.2

-0.1

0.1

0.2

0.3
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in the right-hand diagram, to the kink solution. The latter corresponds to a trajectory from the
saddle at x = 1, y = 0 to the attractor at x = 1/5, y = 0.

The kink solution corresponds to y(x) in (77) describing an arc, lying below the y axis,
starting at (x, y) = (1/5, 0) and ending at (x, y) = (1, 0). The asymptotic forms at the two
endpoints of the arc are

y = − 8

15
(5x − 1) − 26

105
(5x − 1)2 +

1954

5145
(5x − 1)3 + · · · ,

y = −2(1 − x) +
24

7
(1 − x)2 − 640

343
(1 − x)3 + · · · ,

(79)

respectively. In terms of the original variables, the kink solution runs from

f ∼ 1, h ∼ 1
4 (80)

near the origin at ρ = −∞ to

f ∼ 1
5 , h ∼ 9

20 (81)

as ρ approaches infinity.
It should be remarked that there exists a known solution to the equations, corresponding

to the complete metric of Spin(7) holonomy found in [19, 20]. This corresponds to

f (ρ) = 1
5 (1 − e−10ρ/3) or y(x) = 2

3 (1 − 5x). (82)

This solution has the same behaviour at large ρ (i.e. x → 1/5) as we require for the
kink solution, but it is very different at short distance (corresponding to ρ = 0 in this
parametrization), since it has an S4 bolt. In fact in the Spin(7) solution the variable x lies in
the range 0 � x � 1/5.

By making further transformations, one can cast (77) into a standard form for an Abel
equation of the first kind. First, we make use of the known solution given in (82), and define
a new dependent variable v(x), related to y(x) by

y(x) =
(

2x2 − 8x − 1

x2(5x − 1)v(x)
− 3

2(5x − 1)

)−1

. (83)

After this change of variable, equation (77) becomes

x3(5x − 1)vv′ = x3v2 + 6x(4x2 + 5x − 1)v + 28(1 − x)(2x2 − 8x − 1). (84)

The further change of variable to u(x) = (5x − 1)−1/5v(x) yields

x3(5x − 1)7/5uu′ = 6x(5x − 1)1/5(4x2 + 5x − 2)u + 28(1 − x)(2x2 − 8x − 1). (85)
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Figure 9. Asymptotic stability of the kink solution. For small perturbations of the kink we plot a
series of snapshots of (a) the function B(t, r) and (b) the function A(t, r). The dashed line shows
the unperturbed kink solution.

It does not seem be possible to carry this further, since the change of independent variable
required to put the equation into the canonical form u du/dz − u = q(z) is given by taking

z = 6(31x − 2)

x(5x − 1)1/5
− 4254/5x

−1/5
2 F1

(
1

5
,

1

5
; 6

5
; 1

5x

)
, (86)

yielding

u
du

dz
− u = 14(1 − x)(2x2 − 8x − 1)

3x(5x − 1)1/5(4x2 + 5x − 1)
. (87)

Since one cannot invert (86) explicitly to obtain x as a function of u, it appears that no further
progress towards an analytic solution can be made.

Although attempts to solve (77) completely by analytic means have not proved successful,
one can use this first-order system to perform a phase-plane analysis. This can be done by
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Figure 10. Instability of the kink for large perturbations. For large perturbations of the kink
we plot a series of snapshots of (a) the function B(t, r) and (b) the function A(t, r). During the
evolution A(t, r) drops to zero at r = rH ≈ 1.754 which signals the formation of an apparent
horizon there. Outside the horizon the solution relaxes to a static black hole.

writing the first-order equation (77) in terms of an auxiliary parameter t, with
dx

dt
= 2x(1 + 8x − 2x2)y,

dy

dt
= 3(x − 2)y3 + 2(2x2 − 34x + 2)y2 + 12x(17x2 − 26x + 2)y + 56x2(x − 1)(5x − 1).

(88)

The kink solution lies within the region 1/5 � x � 1 in the phase plane. In fact it corresponds
to the unique flow that starts at the saddle at (x, y) = (1, 0), and ends at the attractor at
(x, y) = (1/5, 0). It is also instructive to look at the exact Spin(7) solution (82). This
starts at the saddle at (x, y) = (0, 2/3) and flows (along a straight line) to the attractor at
(x, y) = (1/5, 0). The kink solution, and the extrapolation of the exact Spin(7) solution into
the region 1/5 � x � 1, are shown in figure 8.
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3.5.2. Stability of the kink soliton. In the case of the kink the eigenvalue problem (55) for
the spectrum of small perturbations around a static solution reduces to the single equation

− 1

r7
eδ0(eδ0r7v′

λ)
′ + Kvλ = λ2vλ, (89)

where

K = 1

7r2
(−72 e−3B0 − 16 e4B0 + 200 e−200B0)

+
1

7r
(288 e−3B0 − 48 e4B0 − 240 e−200B0)B ′

0

+
1

7
(−288 e−3B0 − 36 e4B0 + 72 e−200B0)B ′

0
2
. (90)

We have shown above that the profile function of the kink is monotone, hence the zero mode
corresponding to the scaling freedom, v0 = rB ′

0(r), has no zeros which implies by the standard
Sturm–Liouville theory there are no negative eigenvalues. Thus, the kink solution is linearly
stable within our ansatz.

The behaviour of the kink under non-infinitesimal perturbations was studied numerically
by the methods described in section 3.4.2. As in the case of other static solutions we found
that for small perturbations the kink is asymptotically stable, while for large perturbations it
collapses to a black hole. The numerical evidence for these properties is shown in figures 9
and 10.

4. Conclusions

In this paper, we have studied gravitational solitons and kinks in higher dimensions. Our focus
has been the study of their stability, principally in the case of solitons in nine dimensions. We
have considered various possibilities for the spatial metric, including examples such as the
higher-dimensional Taub–NUT metrics [13, 14], which are not supersymmetric, and also the
example of the A8 8-metric of Spin(7) holonomy [15, 16], which is supersymmetric. All
the solitons we consider are trivial topologically (i.e. R

n topology), but non-trivial
geometrically. We studied the question of stability first at the linearized level, using analytic
methods, and found that in all cases the solitons are linearly stable. Numerical analysis
indicates that this stability persists for non-infinitesimal perturbations also, provided they are
small enough in magnitude. The numerical analysis also shows that for sufficiently large
perturbations the solitons are all unstable to black-hole formation. This is not altogether
surprising, since even flat Minkowski spacetime is unstable to sufficiently large perturbations,
which can lead to the formation of a black hole. These instabilities provide a salutory reminder
of the fact that in gravitational theories supersymmetry is not a guarantor of stability beyond
the linearized level.

We also studied in detail a kink metric in eight dimensions, whose existence was first
encountered in [18]. It is a non-trivial cohomogeneity-1 metric on R

8, in which the level
sets are homogeneous 7-spheres viewed as S3 bundles over S4. At small distances the level
surfaces approach the round 7-sphere and the metric is of the form near the origin of Euclidean
8-space. At large distances the level surfaces approach the squashed S7 Einstein metric in the
family of S3 bundles over S4. We showed that the Ricci-flatness conditions for the kink metric
can be reduced to a first-order Abel equation of the first kind, but it appears not to be possible
to obtain an explicit solution analytically. Our discussion includes a proof of the existence of
the Ricci-flat metric.
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Acknowledgments

The research of PB and TC was supported in part by the Polish Research Committee grant
1PO3B01229 and grant 189/6. PR UE/2007/7. The research of CNP is supported in part by
DOE grant DE-FG03-95ER40917.

Appendix A. Nine-dimensional Schwarzschild

This section contains a brief summary of the analysis of the stability of the nine-dimensional
Schwarzschild solution within the framework of the deformations considered in this paper.

If we expand around the nine-dimensional Schwarzschild background, for which

A0 = 1 − 2m

r6
, δ0 = 0, φ

(0)
1 = 0, φ

(0)
2 = 0, (A.1)

we find that working to first order in fluctuations we can keep A = A0 and δ = 0. For the
dynamical fields, we shall now use φ1 and φ2 to denote the linearized fluctuations. Introducing
the ‘tortoise coordinate’ x via dx/dr = A−1

0 , and defining

φ1 = r−7/2u1, φ2 = r−7/2u2, (A.2)

we find that these satisfy

ü1 − ∂2u1

∂x2
+ V u1 = 0, ü2 − ∂2u2

∂x2
+ V u2 = 0, (A.3)

where the potential V (which is the same for both u1 and u2) is given by

V = −1

4

(
1 − 2m

r6

) (
99

r2
+

98m

r8

)
. (A.4)

Note that this is the same potential as was encountered in [17] in the analysis of the nine-
dimensional perturbations of Schwarzschild with a single dynamical variable (corresponding
to u2 = 0 here.)

Appendix B. Time evolution of Kerr–AdS black holes

In this appendix, we use the techniques of this paper to analyse the stability of a particular class
of five-dimensional rotating black holes. The general methods extend to any black hole having
all angular momenta equal, but in this appendix we restrict attention to the (4 + 1)-dimensional
case12. This means that we can again consider an ansatz with SU(2) × U(1) isometry on the
constant-radius spatial sections.

The five-dimensional Kerr–AdS solution [21] with equal angular momenta is given by

ds2
5 = − G dt2(

1 + 2Ma2

ρ4

) +
dρ2

G
+

1

4
ρ2

(
1 +

2Ma2

ρ4

)
(σ3 + 2� dt)2 +

1

4
ρ2

(
σ 2

1 + σ 2
2

)
, (B.1)

where

G =
(

1 − λρ2 − 2M�

ρ2
+

2Ma2

ρ4

)
,

� = 2Ma

ρ4 + 2Ma2
, � = 1 + λa2.

(B.2)

12 For a discussion of general linearized tensor perturbations of Myers–Perry black holes with equal angular momenta,
see [23].
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The metric satisfies RMN = 4λgMN . Thus for the asymptotically AdS case we require
λ < 0.

The new feature in our analysis is the inclusion of the Kaluza–Klein vector in the
dimensional reduction. The electric charge associated with this field is proportional to the
angular momentum of the black hole. Thus we make the following reduction ansatz

dŝ2 = e2αϕ ds2 + e2βϕ
[
e4γφ(σ3 + A)2 + e−2γφ

(
σ 2

1 + σ 2
2

)]
. (B.3)

For the time being, we consider the base metric ds2 to have dimension n. Later, we shall
specialize to the case of immediate interest, namely n = 2. We choose the natural vielbein
basis

ê0 = eβϕ+2γφ(σ3 + A),

êα = eαϕ eα, (B.4)

êa = eβϕ−γφσa, a = 1, 2.

After some calculation, we arrive at the following non-vanishing Ricci-tensor components
(in the vielbein basis):

R̂00 = e−2αϕ{−(3β + (n − 2)α)[β(∇ϕ)2 + 2γ∇ϕ · ∇φ] − β�ϕ − 2γ�φ}
+ 1

4 e(2β−4α)ϕ+4γφF2 + 1
2 e−2βϕ+8γφ,

R̂αβ = e−2αϕ{(6αβ − 3β2 + (n − 2)α2)∇αϕ∇βϕ − 6γ 2∇αφ∇βφ − (3β + (n − 2)α)∇α∇βϕ}
− α e−2αϕ{(3β + (n − 2)α)(∇ϕ)2 + �ϕ}ηαβ − 1

2 e(2β−4α)ϕ+4γφFαγFβ
γ + e−2αϕRαβ,

R̂ab = [
e−2αϕ{(3β + (n − 2)α)[γ∇ϕ · ∇φ − β(∇ϕ)2] + γ�φ − β�ϕ}

− 1
2 e−2βϕ+2γφ(e6γφ − 2)

]
δab,

R̂0α = 1
2 e(α−β)ϕ−2γφ∇β(e(2β−4α)ϕ+4γφFα

β) + 1
2 (nα + 3β) e(β−3α)ϕ+2γφFα

β∇βϕ, (B.5)

where F = dA.
Specializing to the case n = 2, these expressions give

R̂00 = e−2αϕ{−3β[β(∇ϕ)2 + 2γ∇ϕ · ∇φ] − β�ϕ − 2γ�φ}
+ 1

4 e(2β−4α)ϕ+4γφF2 + 1
2 e−2βϕ+8γφ, (B.6)

R̂αβ = e−2αϕ{3β(2α − β)∇αϕ∇βϕ − 6γ 2∇αφ∇βφ − 3β∇α∇βϕ}
−α e−2αϕ{3β(∇ϕ)2 + �ϕ}ηαβ − 1

2 e(2β−4α)ϕ+4γφFαγFβ
γ + e−2αϕRαβ, (B.7)

R̂ab = [e−2αϕ{3β[γ∇ϕ · ∇φ − β(∇ϕ)2] + γ�φ − β�ϕ} − 1
2 e−2βϕ+2γφ(e6γφ − 2)]δab,

(B.8)

R̂0α = 1
2 e−(α+4β)ϕ−2γφ∇β

(
e(5β−2α)ϕ+4γφFα

β
)
. (B.9)

Following the analysis in [8], we use the volume of the S3 to parametrize the radial
direction, and write

dŝ2 = −A e−2δ dt2 + A−1 dr2 + 1
4 r2

[
e2B

(
σ 2

1 + σ 2
2

)
+ e−4B(σ3 + A)2

]
. (B.10)

Thus, comparing with (B.3), we have

eβϕ = 1
2 r, γ φ = −B, ds2 = e−2αϕ(−A e−2δ dt2 + A−1 dr2). (B.11)

Substituting into the Einstein equation

R̂MN = 4λĝMN, (B.12)

we note from (B.9) that

Fµν = cεµν e(2α−5β)ϕ−4γφ, (B.13)
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where c is a constant and εµν is the Levi-Civita tensor in the metric ds2. This expression can be
substituted into the remaining Einstein equations, leading to the momentum and Hamiltonian
constraints

A′ = −2A

r
+

1

3r
(8 e−2B − 2 e−8B) − 2r(e2δA−1Ḃ2 + AB ′2) − 128c2

3r7
e4B − 4λr,

Ȧ = −4rAḂB ′,
(B.14)

the slicing condition

δ′ = −2r(e2δA−2Ḃ2 + B ′2), (B.15)

and the wave equation

(eδA−1r3Ḃ). − (e−δAr3B ′)′ +
4

3
e−δr(e−2B − e−8B) +

128c2

3r5
e−δ e4B = 0. (B.16)

It is straightforward to verify the self-consistency of the equations. Namely, that the
vanishing of the dot of A′ minus the prime of Ȧ in (B.14) yields, after using (B.15) and (B.14),
the wave equation (B.16) for B.

Defining A = 1 − m(r, t)/r2 − λr2, the Hamiltonian constraint in (B.14) becomes

m′ = 2r3(e2δA−1Ḃ2 + AB ′2) +
2

3
r(3 + e−8B − 4 e−2B) +

128c2

3r5
e4B. (B.17)

This is manifestly positive.
Note that the constant c is related to the angular momentum. Lowering the index on the

Killing vector ∂/∂ψ gives the 1-form

K = e2βϕ+4γφ(σ3 + A). (B.18)

The angular momentum is given by the Komar integral J = 1/(16π)
∫
S3 ∗̂dK , where ∗̂ is the

Hodge dual in the five-dimensional metric dŝ2
5 , and we have

∗̂dK = e(5β−2α)ϕ+4γφ∗F ∧ σ1 ∧ σ2 ∧ σ3 + · · · , (B.19)

where ∗F is the 0-form Hodge dual of the field strength F in the 2-metric ds2. Thus the
angular momentum can be seen to be nothing but the two-dimensional electric charge of the
dimensionally-reduced solution. From (B.13), the Komar integral therefore gives the angular
momentum

J = c

16π

∫
S3

σ1 ∧ σ2 ∧ σ3 = πc. (B.20)

Comparing the radial coordinate r used in (B.10) with the radial coordinate ρ used in
(B.1), we see that

r = ρ

(
1 +

2Ma2

ρ4

)1/6

. (B.21)

This can be used to rewrite the previous equations using ρ instead of r as the radial variable.
We make the expansion

A = A0(1 + Ã), B = B0 + B̃, δ = δ0 + δ̃, (B.22)

where A0, B0 and δ0 denote the background expressions in the Kerr–AdS metric, which can
be read off from (B.1) and (B.2), and we work to linear order in the tilded quantities.

From the slicing equation (B.15) we obtain

(3ρ4 + 2Ma2)
∂δ̃

∂ρ
+ 16Ma2 ∂B̃

∂ρ
= 0, (B.23)
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whilst from the Hamiltonian constraint in (B.14) we find

(3ρ4 + 2Ma2)Ã + 16Ma2B̃ = 0. (B.24)

(Taking the constant of integration to be zero.) These two equations can be used to solve for
the perturbations δ̃ and Ã in terms of the dynamical variable B̃ 13. The momentum constraint
in (B.14) implies

(3ρ4 + 2Ma2) ˙̃A + 16Ma2 ˙̃B = 0, (B.25)

which is consistent with (B.24).
The wave equation (B.16) then gives

ρ3

G

(
1 +

2Ma2

ρ4

)
¨̃B − (ρ3GB̃ ′)′ +

8ρ
(
3 + 12Ma2

ρ4 + 16M2a2(3+2λa2)

3ρ6 − 4M2a4

ρ8

)
3
(
1 + 2Ma2

3ρ4

)2 B̃ = 0, (B.26)

where a prime here means d/dρ, and, from (B.2),

G ≡ 1 − λρ2 − 2M�

ρ2
+

2Ma2

ρ4
. (B.27)

We can cast the wave equation into Schrödinger form by introducing the ‘tortoise
coordinate’ x defined by

dx =
(

1 +
2Ma2

ρ4

)1/2

G−1 dρ, (B.28)

and introducing a new dynamical variable χ(x, t) defined by

B̃ = ρ−3/2

(
1 +

2Ma2

ρ4

)−1/4

χ. (B.29)

Equation (B.26) then takes the form

χ̈ − ∂2χ

∂x2
+ V χ = 0, (B.30)

where the potential V is given by

V = G

4ρ2

[
35 + 15λρ2 +

160M3a4(1 + 2λa2)ρ2

(ρ4 + 2Ma2)3
− 16M2a2(7ρ2 + 15λa2ρ2 + a2)

(ρ4 + 2Ma2)2

− 2M(87ρ2 + 58λa2ρ2 − 92a2)

ρ4 + 2Ma2
− 256M2a2(3ρ2 + 2λa2ρ2 − 2a2)

(3ρ2 + 2Ma2)2

+
64M(9ρ2 + 6λa2ρ2 − 8a2)

3ρ2 + 2Ma2

]
. (B.31)

The structure of the potential V can easily be studied in the special case when λ = 0, so
that the background metric is the Ricci-flat a = b Myers–Perry solution [22]. It can be seen
from (B.27) that in order to have a horizon, i.e. for the function G to have a zero for real ρ, it
must be that a2 � 1

2M . If, therefore, we write M = 2a2(1 + s2), where s is a real constant,
then the outer horizon occurs at

ρ2
+ = 2a2(1 + s2 + s

√
1 + s2). (B.32)

Writing ρ2 = ρ2
+ + y2, and substituting this and M = 2a2(1 + s2) into the expression (B.31)

for the potential, one finds that V is manifestly non-negative everywhere outside the horizon
and it tends to zero on the horizon and at infinity.

13 Note that in the case of linearization around the Schwarzschild solution, discussed in [8], one can take δ̃ = 0 and
Ã = 0, so that only the perturbation B̃ of the dynamical variable B need be considered in that case.



4776 P Bizoń et al
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[8] Bizoń P, Chmaj T and Schmidt B G 2005 Critical behavior in vacuum gravitational collapse in 4+1 dimensions

Phys. Rev. Lett. 95 071102 (Preprint gr-qc/0506074)
[9] Witten E 1981 A simple proof of the positive energy theorem Commun. Math. Phys. 80 381
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