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Abstract

We discuss the nonlinear origin of the power-law tail in the long-time evolution
of a spherically symmetric self-gravitating massless scalar field in even-
dimensional spacetimes. Using the third-order perturbation method, we derive
explicit expressions for the tail (the decay rate and the amplitude) for solutions
starting from small initial data, and we verify this prediction via numerical
integration of the Einstein-scalar field equations in four and six dimensions.
Our results show that the coincidence of decay rates of linear and nonlinear
tails in four dimensions (which has misguided some tail hunters in the past) is
in a sense accidental and does not hold in higher dimensions.

PACS numbers: 04.40.Nr, 04.25.Nx

1. Introduction

This paper is concerned with the long-time behavior of a spherically symmetric self-gravitating
massless scalar field. This toy-model of gravitational collapse has been intensively studied
in the past leading to valuable insights into the validity of the weak cosmic censorship and
no-hair conjectures. In particular, Christodoulou proved that there are two generic endstates
of evolution: Minkowski spacetime for small initial data [1] and Schwarzschild black hole for
large initial data [2]. In both cases, the upper bound for the rate of relaxation to the endstate
inside the light cone is t−3 (this was proved in [1] for the dispersive solutions and recently by
Dafermos and Rodnianski [3] for the collapsing solutions). In view of these rigorous results,
one might wonder what is the point of studying this problem again. Our motivation is twofold.

First, it is natural to ask whether the decay rates mentioned above are optimal and, if
so, what are the corresponding amplitudes of the tails. This kind of quantitative information
might be physically relevant (provided that the intuitions gained in this toy-model carry over
to more realistic situations), for example, in assessing the possibility of detecting the tails in
future gravitational wave experiments.
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Second and foremost, we want to clarify some longstanding confusion which is widespread
throughout the vast relativity literature dealing with wave tails. To explain what this confusion
is about, we need to make some historical remarks. The study of wave tails in general relativity
was launched in the seminal paper by Price [4], where he gave a heuristic argument that a
linear massless scalar field propagating on the fixed Schwarzschild background decays as t−3

near timelike infinity. This result has been later rederived by different methods and confirmed
numerically (the works [5–9] are particularly noteworthy), and finally proved rigorously in
[3] (as a special decoupled case of the main theorem on the coupled Einstein-scalar system).
An especially influential contribution to the study of tails was made in a pair of papers by
Gundlach, Price and Pullin [6, 10]. In the first paper, [6], they argued, using linearized theory,
that the t−3 tail is due to the backscattering of the outgoing radiation off the curvature at
large distances, and therefore it is present for any asymptotically flat solution, not only for
black hole spacetimes. In the second paper, [10], GPP solved the spherically symmetric
Einstein-scalar field equations numerically and found that, indeed, tails do develop for any
initial data and moreover they decay as t−3 regardless of the endstate of evolution. This work
was a significant step toward understanding of tails, however the fact that it appeared back
to back with [6] led also (somewhat ironically) to some confusion. Namely, the remarkable
agreement between the decay rates of tails observed numerically in the nonlinear evolution
[10] and the predictions of the linearized theory [6] has been interpreted (first rather cautiously
by the authors themselves and later with increasing sureness in numerous citations of [10]) as
if the linearized theory applies qualitatively (and, as long as the power-law exponents of tails
are concerned, even quantitatively) in the nonlinear regime. We wish to point out that this
interpretation is too naive.

We claim that the tails observed in [10] (and later confirmed in [11, 12] with better
numerical accuracy) have genuinely nonlinear origin for the dispersive solutions (while for
the collapsing solutions they have both linear and nonlinear ingredients). To substantiate
our claim, we compute the late-time behavior (the decay rate and the amplitude of a tail)
of the self-gravitating scalar field in even-dimensional spacetime for small initial data using
the nonlinear perturbative scheme developed in our recent papers [13–17]. The outcome
of this simple analytic computation is shown to agree extremely well with the results of
high-precision numerical integration of the Einstein-scalar field equations in four and six
dimensions; however, it does not agree with the linearized theory in dimensions higher than
4. Thus, the equality of the decay rates of linear and nonlinear tails seems to be a misleading
idiosyncrasy of the Einstein-scalar field equations in four dimensions. This paper is concerned
only with subcritical initial data which lead to dispersion. Work on the collapsing solutions is
still in progress.

The rest of the paper is organized as follows. In section 2, we construct a simple
iterative scheme for solving the spherically symmetric Einstein-scalar field equations in even-
dimensional spacetimes. This scheme is applied in section 3 to derive the second-order
approximation for the mass function and the third-order approximation for the scalar field in
four dimensions. The analogous calculation in higher even dimensions is done in section 4.
In section 5, we compare the nonlinear tails with the linear tails on the fixed Schwarzschild
background. Section 6 contains numerical evidence confirming the analytic formulae for the
tail from sections 3 and 4. In section 7, we make some final remarks.

2. Field equations and the iterative scheme

We consider the self-gravitating real massless scalar field φ in d + 1 dimensions, where d � 3
is odd. The Einstein equations for metric gαβ are
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Gαβ = 8πTαβ, Tαβ = ∇αφ∇βφ − 1
2gαβ(∇μφ∇μφ), (1)

and the scalar field satisfies the wave equation (which is equivalent to ∇αT αβ = 0)

∇μ∇μφ = 0. (2)

We assume spherical symmetry, so φ = φ(t, r), and use the following ansatz for the metric,

ds2 = e2α(t,r)(−e2β(t,r) dt2 + dr2) + r2 d�2
d−1, (3)

where d�2
d−1 is the round metric on the unit (d − 1)-dimensional sphere. We also define the

mass function m(t, r) = (1 − e−2α)rd−2. In these variables the Einstein equations take the
form

m′ = κrd−1 e−2α(φ′2 + e−2βφ̇2), (Hamiltonian constraint) (4)

ṁ = 2κrd−1 e−2αφ̇φ′, (momentum constraint) (5)

β ′ = (d − 2)
m

rd−1
e2α, (6)

where κ = 8π
d−1 , and primes and dots denote partial derivatives with respect to r and t,

respectively. Equation (6), corresponding to Gt
t + Gr

r = 8π
(
T t

t + T r
r

) = 0, is sometimes
referred to as the polar slicing condition. The wave equation (2), which can be viewed as the
integrability condition for equations (4) and (5), becomes

(e−βφ̇)· − 1

rd−1
(rd−1 eβφ′)′ = 0. (7)

We assume that initial data are small, smooth and compactly supported (the last assumption
can be replaced by a suitable fall-off condition)

φ(0, r) = εf (r), φ̇(0, r) = εg(r). (8)

We make the following perturbative expansion:

m(t, r) = m0(t, r) + εm1(t, r) + ε2m2(t, r) + · · · , (9)

β(t, r) = β0(t, r) + εβ1(t, r) + ε2β2(t, r) + · · · , (10)

φ(t, r) = φ0(t, r) + εφ1(t, r) + ε2φ2(t, r) + ε3φ3(t, r) + · · · . (11)

Substituting this expansion into the field equations and grouping terms with the same power
of ε, we get the iterative scheme which can be solved recursively.

In this paper we consider perturbations about Minkowski spacetime, so m0 = β0 = φ0 =
0. At the first order the metric functions m1 = β1 = 0 (this follows from regularity at r = 0),
while φ1 satisfies the flat space radial wave equation

(
� = ∂2

t − ∂2
r − d−1

r
∂r

)
�φ1 = 0, φ1(0, r) = f (r), φ̇1(0, r) = g(r). (12)

The general spherically symmetric solution of equation (12) in odd spatial dimensions
d = 2
 + 3 is given by a superposition of outgoing and ingoing waves

φ1(t, r) = φret
1 (t, r) + φadv

1 (t, r), (13)

where

φret
1 (t, r) = 1

r
+1

l∑
k=0

(2
 − k)!

k!(
 − k)!

a(k)(u)

(v − u)
−k
,

φadv
1 (t, r) = 1

r
+1


∑
k=0

(−1)k+1 (2
 − k)!

k!(
 − k)!

a(k)(v)

(v − u)
−k
,

(14)
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and u = t − r, v = t + r are the retarded and advanced times, respectively (the superscript
in round brackets denotes the kth derivative). Note that for compactly supported initial data,
the generating function a(x) can be chosen to have compact support as well (this condition
determines a(x) uniquely).

At the second order �φ2 = 0, hence φ2 = 0 (because it has zero initial data), while the
metric functions satisfy the following equations:

m′
2 = κrd−1 (

φ̇2
1 + φ′2

1

)
, (15)

ṁ2 = 2κrd−1φ̇1φ
′
1, (16)

β ′
2 = (d − 2)m2

rd−1
. (17)

We postpone the discussion of this system to the following section and now proceed to the
third order, where we have

�φ3 = 2β2φ̈1 + β̇2φ̇1 + β ′
2φ

′
1. (18)

To solve this equation we use the Duhamel formula for the solution of the inhomogeneous
wave equation � φ = N(t, r) with zero initial data

φ(t, r) = 1

2r
+1

∫ t

0
dτ

∫ t+r−τ

|t−r−τ |
ρ
+1P
(μ)N(τ, ρ) dρ, (19)

where P
(μ) are Legendre polynomials of degree 
 (recall that 
 = (d − 3)/2) and
μ = (r2 + ρ2 − (t − τ)2)/2rρ (note that −1 � μ � 1 within the integration range). Applying
this formula to equation (18), using null coordinates η = τ − ρ and ξ = τ + ρ, and the
abbreviation K(β, φ) = 2βφ̈ + β̇φ̇ + β ′φ′, we obtain

φ3(t, r) = 1

2
+3r
+1

∫ t+r

|t−r|
dξ

∫ t−r

−ξ

(ξ − η)
+1P
(μ)K(β2(ξ, η), φ1(ξ, η)) dη, (20)

where now μ = (r2 + (ξ − t)(t − η))/r(ξ − η). If the initial data (8) vanish outside a ball of
radius R, then for t > r + R we may drop the advanced part of φ1(t, r) and interchange the
order of integration in (20) to get

φ3(t, r) = 1

2
+3r
+1

∫ ∞

−∞
dη

∫ t+r

t−r

(ξ − η)
+1P
(μ)K(β2(ξ, η), φret
1 (ξ, η)) dξ. (21)

In order to determine the behavior of φ3(t, r) for large t, we need only to know the behavior
of the metric function β2(t, r) along the light cone for large values of r (the intersection of the
integration range in (21) with the support of φret

1 (t, r)). This calculation will be done in the
following section. Having that, we shall expand the function K in (21) in the inverse powers
of (ξ − η) and use the identity (see the appendix in [16] for the derivation)∫ t+r

t−r

dξ
P
(μ)

(ξ − η)n
= (−1)


2(n − 2)


(2
 + 1)!!

r
+1(t − η)n−
−2

[(t − η)2 − r2]n−1
F

(

+2−n

2 , 
+3−n
2


 + 3/2

∣∣∣∣
(

r

t − η

)2
)

,

(22)

where (n − 2)
 = (n − 2)(n − 3) · · · (n − 
 − 1) (
 > 0) and (n − 2)0 = 1.
If one has no fear, this iterative procedure can be continued to higher orders; however,

it seems like an overkill in view of two facts. First, the iteration has no chance to converge
(cf [18]) so our perturbation series is only asymptotic. Second, already the third-order
approximation shows perfect agreement with numerical results (see section 6).
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3. Nonlinear tail in 3 + 1 dimensions

In this section, written mainly for the benefit of the reader who is not interested in higher
dimensions, we follow the general strategy sketched above to present a detailed calculation of
the third-order iterate φ3(t, r) in three spatial dimensions. In the following section we shall
repeat this calculation for any odd spatial dimension d � 3.

For d = 3 (hence l = 0), the solution (13), (14) of the free wave equation takes the form

φ1(t, r) = a(u) − a(v)

r
, (23)

where the function a(x) is uniquely determined by the initial data. Substituting (23) into (15)
and integrating, we get

m2(t, r)
t>R= 4π

∫ r

0

(
2a′2(t − ρ) − ∂ρ

a2(t − ρ)

ρ

)
dρ, (24)

where we used that m2(t, r = 0) = 0, which follows from regularity of initial data at the origin
and (16). Here and in the following we use repeatedly the fact that a(x) = 0 for |x| > R,R

being the radius of a ball on which the initial data (8) are supported. To describe the behavior
of m2(t, r) near the lightcone, it is convenient to use the null coordinate u = t − r instead of
t, and rewrite (24) as

m2(u, r)
r+u>R= 4π

(
2
∫ ∞

u

a′2(s) ds − a2(u)

r

)
. (25)

Next, using the gauge freedom to set β2(t, r = 0) = 0 and integrating equation (17), we get

β2(t, r)
t>R= 4π

(
2
∫ r

0

1

ρ2

∫ ∞

t−ρ

a′2(s) ds dρ −
∫ r

0

a2(t − ρ)

ρ3
dρ

)
. (26)

The first integral can be integrated by parts giving

β2(u, r)
r+u>R= 4π

(
−2

r

∫ ∞

u

a′2(s) ds + 2
∫ ∞

u

a′2(s)
r − (s − u)

ds −
∫ ∞

u

a2(s)

(r − (s − u))3
ds

)
.

(27)

In order to determine the tail of φ3, we need only two leading terms in the expansion of the
above formula in the inverse powers of r. Hereafter, it is convenient to define the following
integrals (for non-negative integers m, n):

Im
n (u) =

∫ ∞

u

(s − u)m
(
a(n)(s)

)2
ds. (28)

Then our results can be cast in the form

β2(u, r)
r+u>R= 4π

r2

[
2I 1

1 (u) +
1

r

(
2I 2

1 (u) − I 0
0 (u)

)
+ O

(
1

r2

)]
, (29)

β̇2(u, r)
r+u>R= −4π

r2

[
2I 0

1 (u) +
1

r

(
4I 1

1 (u) − a2(u)
)

+ O
(

1

r2

)]
, (30)

β ′
2(u, r)

r+u>R= 4π

r2

[
2I 0

1 (u) − 1

r
a2(u) + O

(
1

r2

)]
. (31)

Substituting (23) and (29)–(31) into (21) (with 
 = 0) we get for t > r + 3R

φ3(t, r) = 24π

r

∫ +∞

−∞
dη

∫ t+r

t−r

dξ

(ξ − η)2

×
[

d

dη

(
I 1

1 (η)a′(η)
)

+
1

ξ − η

(
I 0

1 (η)a(η) +
d

dη
Q0(η)

)
+ O

(
1

(ξ − η)2

)]
, (32)
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where

Q0(η) = 2I 1
1 (η)a(η) +

(
2I 2

1 (η) − I 0
0 (η)

)
a′(η). (33)

Elementary integrations over ξ and by parts over η yield for large retarded times u = t − r

φ3(t, r) = t

(t2 − r2)2

[
�0 + O

(
t

t2 − r2

)]
, (34)

where the coefficient

�0 = −25π

∫ +∞

−∞
I 0

1 (s)a(s) ds (35)

is the only trace of initial data. From (34) we obtain the late-time tails in two asymptotic
regimes: φ3(t, r) � �0t

−3 at future timelike infinity (r = const, t → ∞) and (rφ3)(v =
∞, u) � 1

4�0u
−2 at future null infinity (v = ∞, u → ∞).

4. Nonlinear tail in d + 1 dimensions

Proceeding along the same lines as described in detail in the previous section, we get the
analogs of formulae (29)–(31) in d + 1 dimensions (recall that d = 2
 + 3 so κ = 4π/(
 + 1))

β2(u, r)
r+u>R= (2
 + 1)κ

r2
+2

[
2I 1


+1(u) +

 + 1

r

(
2I 2


+1(u) − (
 + 1)I 0

 (u)

)
+ O

(
1

r2

)]
, (36)

β̇2(u, r)
r+u>R= − (2
 +1)κ

r2
+2

[
2I 0


+1(u) +

 +1

r

(
4I 1


+1(u)− (
 +1)(a(
)(u))2) +O
(

1

r2

)]
, (37)

β ′
2(u, r)

r+u>R= (2
 + 1)κ

r2
+2

[
2I 0


+1(u) − (
 + 1)2 1

r

(
a(
)(u)

)2
+ O

(
1

r2

)]
, (38)

with Im
n (u) defined in (28). Substituting these expressions into (21) we get for t > r + 3R

φ3(t, r) = 22
+2(2
 + 1)κ

r
+1

∫ +∞

−∞
dη

∫ t+r

t−r

dξ

(ξ − η)2
+2

[
d

dη

(
I 1

+1(η)a(
+1)(η)

)
+


 + 1

ξ − η

(
I 0

+1(η)a(
)(η) +

d

dη
Q
(η)

)
+ O

(
1

(ξ − η)2

)]
, (39)

where

Q
(η) = (
 + 2)I 1

+1(η)a(
)(η) +

(
2I 2


+1(η) − (
 + 1)I 0
0 (η)

)
a(
+1)(η). (40)

Using the identity (22) we get the asymptotic behavior for large retarded times u = t − r

φ3(t, r) = t
+1

(t2 − r2)2
+2

{(
4
 + 2 − 


(
1 − r2

t2

))
F

(− 

2 ,− 


2 + 1
2


 + 3/2

∣∣∣∣ r2

t2

)

− (2
 + 1)F

(− 

2 ,− 


2 − 1
2


 + 3/2

∣∣∣∣ r2

t2

)} [
�



 + 1
+ O

(
t

t2 − r2

)]
, (41)

where

�
 = (−1)l+123l+5π

∫ +∞

−∞
I 0

+1(s)a

(
)(s) ds. (42)

For 
 = 0, the formula (41) reduces to (34). For 
 � 1, the integral (42) can be integrated by
parts again, giving

�
 = (−1)l+123l+5π

∫ +∞

−∞
(a(
+1)(s))2a(
−1)(s) ds. (43)

6
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Asymptotics at time and null infinity are easily obtained from (41). They read

φ3(t, r) = 1

t3
+3

[
�
 + O

(
1

t

)]
, (44)

(r
+1φ3)(v = ∞, u) = 1

u2
+2

[
(2
 + 1)!(2
 + 1)!!

2(3
 + 2)!
�
 + O

(
1

u

)]
. (45)

This is our main result. We claim that the formulae (44) and (45) provide very good
approximations of the tail for solutions with sufficiently small initial data. By this we mean
that for any given smooth compactly supported profiles f (r) and g(r) in (8), one can choose
ε so small that

lim
t→∞ t3
+3|φ(t, r) − ε3φ3(t, r)| = O(ε5), (46)

lim
u→∞ u2
+2|(r
+1(φ − ε3φ3))(v = ∞, u))| = O(ε5), (47)

at time and null infinity, respectively. Numerical evidence for this claim is given in section 6.

5. Linear scalar waves on Schwarzschild background

For the sake of completeness, in this section we recall briefly what is known about the decay
of the massless scalar field propagating outside the (d + 1)-dimensional Schwarzschild black
hole

ds2 = −
(

1 − M

rd−2

)
dt2 +

(
1 − M

rd−2

)−1

dr2 + r2 d�2
d−1. (48)

As above, we consider only odd spatial dimensions d � 3 and use the integer index

 = (d − 3)/2. In terms of the tortoise coordinate x, defined by dr/dx = 1 − M/r2
+1,
and the variable ψ(x) = r
+1φ(r), the radial wave equation in the metric (48) for r � M

reduces to the flat spacetime (1 + 1)-dimensional wave equation with the potential (on the
whole axis −∞ < x < ∞)

∂2
t ψ − ∂2

xψ + V (x)ψ = 0, V =
(

1 − M

r2
+1

)(

(
 + 1)

r2
+

M(
 + 1)2

r2
+3

)
. (49)

Now, there is an important difference between 
 = 0 and 
 > 0 cases which is due to the fact
that only for 
 = 0 the tortoise coordinate involves the logarithm. More concretely, for 
 = 0
we have

x = r + M ln(r/M − 1), (50)

hence for x � M

r = x − M ln(x/M) +
M2 ln(x/M)

x
+

M2

x
+ O

(
M3 ln2(x/M)

x2

)
, (51)

and therefore

V (x) = M

x3
+

3M2 ln(x/M)

x4
− M2

x4
+ O

(
M3 ln2(x/M)

x5

)
, (52)

which gives rise to the Price tail φ(t, r) ∼ Mt−3 [4].
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In contrast, for 
 � 1 we have (see [15])

r = x +
1

2


M

x2

− 2
 + 1

2
(4
 + 1)

M2

x4
+1
+ O

(
M3

x6
+2

)
, (53)

which implies that for large x

V (x) = 
(
 + 1)

x2
+

(2
 + 1)2(
 + 1)(4
 + 3)

4
(4
 + 1)

M2

x4
+4
+ O

(
M3

x6
+5

)
. (54)

A remarkable feature of this effective potential is the absence of a term proportional to M. It
is for this reason that the tail drops very rapidly:

φ(t, r) ∼ M2

t6
+4
, (55)

as follows from the general formula t−(α+2
) for the tail produced by the potential of the form

(
 + 1)/x2 + U(x) with U(x) ∼ x−α for large x [7, 15].

6. Numerics

In order to verify the above analytic predictions, we solved numerically the initial value
problem (4)–(8) for various initial data. To this end, we rewrite the wave equation (7) as a pair
of two first-order equations for auxiliary fields � = φ′ and � = e−βφ̇:

�̇ = 1

rd−1
(rd−1 eβ�)′ and �̇ = (eβ�)′. (56)

We solve these equations with fourth-order accurate Runge–Kutta time stepping using finite
differencing in space. At each time step we update the metric functions m(t, r) and β(t, r) by
integrating the Hamiltonian constraint (4) and the slicing condition (6) with the fourth-order
Runge–Kutta method. To ensure regularity at the origin we impose the boundary conditions
�(t, 0) = 0 and �′(t, 0) = 0, which are implemented by �(t, r) and �(t, r) being odd
and even functions of r, respectively. To avoid the contamination of the tail by spurious
reflections from the outer boundary of the computational grid, we place that boundary far
away and compute the solution only inside the domain of dependence of the initial surface.
As was pointed out in [7], a reliable numerical computation of tails requires high-order finite
difference schemes, since otherwise the ghost potentials generated by discretization errors
produce artificial tails which might mask the genuine behavior. We used fourth- and tenth-
order difference schemes for d = 3 and d = 5 dimensions, respectively4. To eliminate
high-frequency numerical instabilities, we add a small amount of artificial dissipation [19],
that is, after each time step advancing solution f from t to t + �t on a grid with (�t,�r)
mesh we add the Kreiss–Oliger dissipative term f (t + �t, r) −→ f (t + �t, r) + Qkf (t, r),
where (for consistency with 2(k − 1)-order finite difference scheme) Qk is a finite-difference
operator of order 2k of form Qk = (−1)k+1 σ

22k

(
�t
�r

)
(�+)

k (�−)k where σ is of order 1 and
�±f (t, r) = ±(f (t, r ± �r) − f (t, r)). Finally, to suppress the accumulation of round-off
errors at late times our codes were run in 128 bit precision. For the above reasons the accurate
numerical simulations of tails, albeit straightforward, are computationally expensive even in
spherical symmetry.

4 On the fixed Schwarzschild background in d = 5, the scalar field φ(t, r) decays as t−10 (see (55)). If a weak
self-gravitating scalar field decayed at this rate, its tail would be hidden under an artificial tail generated by a ghost
potential unless the tenth or higher order discretization is used.
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Figure 1. The log–log plot of φ̇(t, 0) for small (ε = 2−12), intermediate (ε = 2−6) and large
(ε = 1) amplitudes of initial data. The slopes (γ = 4 for d = 3 and γ = 7 for d = 5) do not
depend on the size of the data.

The numerical results presented here correspond to initial data generated by the function
(see (14))

εa(x) = ε√
2π

exp(−x2) (57)

for different values of ε. For these initial data, our third-order approximation (44) yields the
following asymptotic behavior at timelike infinity:

φ̇(t, r) = 12
√

πε3 1

t4

(
1 + O

(
1

t

))
for d = 3 (58)

and

φ̇(t, r) = −1024
√

2ε3

√
3

1

t7

(
1 + O

(
1

t

))
for d = 5. (59)

In figure 1 we plot φ̇(t, 0) = eβ�(t, 0) in d = 3 and d = 5 for three different values of ε.
The late-time tails are clearly seen as straight lines on log–log plots. We fit our numerical data
with the formula

φ̇(t, r) = At−γ exp(B/t + C/t2), (60)

which gives the local power index (LPI) [11]

n(t, r) := −t φ̈(t, r)/φ̇(t, r) = γ + B/t + 2C/t2. (61)

We plot the local power index at r = 0 as a function of 1/t in figure 2.
Our fitting procedure proceeds in two steps. First, from the local power index data on the

interval 0 < 1/t < 1/50 we fit γ, B and C in (61). Next, having determined γ, B and C in this
way, we fit A in (60) from φ̇ data on the interval t > 50. We have verified that the outcome of
the fit (the amplitude A and the decay rate γ ) does not depend on the observation point r. The
results for r = 0 and their confrontation with analytic predictions are summarized in table 1
for d = 3 and table 2 for d = 5. The agreement between our third-order approximation
and the results of numerical integration of the Einstein-scalar field equations is excellent for
sufficiently small initial data.

In figure 3 we plot the fitted amplitude of the tail versus the amplitude of initial data and
compare it with our third-order analytic formula. The deviation from the scaling A ∼ ε3 for

9
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3.75

3.8

3.85

3.9

3.95

4

0 0.01 0.02 0.03 0.04 0.05

n(
t,0

)

1/t

d=3

ε = 2-8, 2-10, 2-12

ε = 2-2

ε = 1

6.998

6.999

7

7.001

7.002

7.003

0 0.01 0.02 0.03 0.04 0.05

n(
t,0

)

1/t

d=5

ε = 2-8, 2-10, 2-12

ε = 2-6

ε = 2-4

Figure 2. The local power index n(t, 0) as a function of 1/t . The curves corresponding to
small initial data (ε = 2−8, 2−10, 2−12) are indistinguishable which indicates that higher order
corrections in the perturbation series are negligible.

Table 1. d = 3.

Numerics: LPI data Theory (third order) Numerics: φ̇ data

ε B C γ γ A A

2−12 −2.453 84 1.981 80 4.0000 4 3.095 11 × 10−10 3.095 11 × 10−10

2−10 −2.449 83 1.713 98 4.0000 4 1.980 87 × 10−8 1.980 83 × 10−8

2−8 −2.449 77 1.698 14 4.0000 4 1.267 76 × 10−6 1.267 60 × 10−6

2−6 −2.452 70 1.712 75 4.0000 4 8.113 65 × 10−5 8.099 71 × 10−5

2−4 −2.499 38 1.958 63 4.0000 4 5.192 74 × 10−3 5.053 55 × 10−3

2−3 −2.642 86 2.708 11 4.0000 4 0.041 5419 0.037 3293
2−2 −3.141 14 5.244 92 4.0000 4 0.332 335 0.222 460
2−1 −4.425 97 11.2084 4.0000 4 2.658 68 0.737 111
1 −6.496 35 18.7893 3.9999 4 21.2694 1.073 16
2 −8.989 50 25.4951 4.0002 4 170.156 0.997 247
4 −11.8828 32.3576 4.0021 4 1361.24 0.892 345

Table 2. d = 5.

Numerics: LPI data Theory (third order) Numerics: φ̇ data

ε B C γ γ A A

2−12 4.642 90 × 10−4 0.650 257 7.0000 7 −1.216 67 × 10−8 −1.216 67 × 10−8

2−10 2.485 54 × 10−4 0.654 252 7.0000 7 −7.786 72 × 10−7 −7.786 44 × 10−7

2−8 −1.024 40 × 10−4 0.654 138 7.0000 7 −4.983 50 × 10−5 −4.980 72 × 10−5

2−6 −6.106 26 × 10−3 0.660 806 7.0000 7 −3.189 44 × 10−3 −3.161 23 × 10−3

2−4 −0.100 262 0.765 030 7.0000 7 −0.204 124 −0.177 845
2−3 −0.380 511 1.071 74 7.0000 7 −1.632 99 −0.986 771
2−2 −1.288 78 2.052 37 7.0000 7 −13.0639 −2.825 27
2−1 −3.482 34 4.295 13 7.0000 7 −104.512 −3.537 01
1 −6.866 34 7.068 40 7.0000 7 −836.092 −3.256 61
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Figure 3. The log–log plot of the amplitude of the tail as a function of the amplitude of initial
data (black dots). The third-order approximation (dashed line) is excellent for small data, but it
deteriorates for large data lying near the threshold for black hole formation (ε ∼ 1). The scaling
A ∼ ε3 was previously observed by GPP (see figure 14 in [10]).

large ε signals the breakdown of the third-order approximation. We stress that we get the same
decay rates (γ = 4 for d = 3 and γ = 7 for d = 5) for all subcritical evolutions, regardless
of whether our third-order formula predicts correctly the amplitude of the tail (for small data)
or fails (for large data where higher order terms in the asymptotic expansion (11) cannot be
neglected).

7. Final remarks

Using the third-order perturbation method we derived explicit formulae for the late-time
tail (the decay rate and the amplitude) of a spherically symmetric, self-gravitating massless
scalar field for solutions starting from small initial data. We verified that these formulae are
in excellent agreement with the results of numerical integration of the Einstein-scalar field
equations in four and six dimensions. Our results show that the tail has genuinely nonlinear
origin and should not be mistaken with the linear tail coming from the backscattering off the
Schwarzschild potential. It seems to us that this distinction between linear and nonlinear tails
has not been widely recognized in the past which is probably due to the fact that in four-
dimensional spacetimes these two different tails decay at the same rate t−3. To demonstrate
that this coincidence is an idiosyncrasy of four dimensions, we computed both kinds of tails
in d + 1 dimensions for d = 2
 + 3 (
 = 1, 2, . . .) and showed that the linear and nonlinear
tails decay at different rates: t−(6
+4) and t−(3
+3), respectively. This illustrates how viewing
the dimension of a spacetime as a parameter may help understand which features of general
relativity depend crucially on our world being four dimensional and which ones are general.

It would be interesting to generalize the results of this paper to collapsing solutions where
the endstate of evolution is a black hole. The studies in this direction are in progress and
will be reported elsewhere. We expect that in this case the tail has both linear and nonlinear
contributions with the latter being qualitatively the same as for dispersive solutions described
above. Note that the analogous perturbative calculation of tails is much harder on the black
hole background because two basic tools that we used above, Huygens’ principle and the
explicit expression for Duhamel’s formula, are missing. For dispersive solutions these tools
allowed us to compute the third-order perturbation in a shamelessly explicit way; however,
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from the perspective of generalizing the results to collapsing solutions, it is instructive to redo
this calculation in an asymptotic manner keeping track of only leading order terms in the
perturbative equations. Such an efficient calculation, which gives additional insight into the
mechanism of some cancellations in our asymptotic expansions, has been done recently by
Szpak [20] and will appear as a comment on this paper.
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