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Abstract
Building on previous work on the critical behaviour in gravitational collapse of
the self-gravitating SU(2) σ -field and using high precision numerical methods
we uncover a fine structure hidden in a narrow window of parameter space. We
argue that this numerical finding has a natural explanation within a dynamical
system framework of critical collapse.

PACS numbers: 04.25.Dm, 04.40.−b, 05.45.−a, 04.70.Bw

1. Introduction

Over the past few years the Einstein–SU(2)–σ model has attracted a great deal of attention
[1–7]. This model is interesting because its rich phenomenology is sensitive to the value
of a dimensionless parameter η characterizing the model which leads to various bifurcation
phenomena. The most interesting bifurcation was found by Lechner et al [4] who showed
that the critical behaviour in gravitational collapse changes character from continuous to
discrete self-similarity when the coupling constant η increases above a critical value ηc. This
phenomenon was interpreted in terms of dynamical systems theory as the homoclinic loop
bifurcation where the two critical solutions, continuously self-similar (CSS) and discretely
self-similar (DSS), merge in phase space. Since the echoing period � of the DSS solution
diverges as η → ηc, the numerical analysis of this bifurcation is extremely difficult and for
this reason some of the aspects of critical behaviour near the bifurcation point, in particular
the black-hole mass scaling law, were left open in [4].

Below, using high precision numerical methods, we confirm the main findings of [4].
In addition, we find that just above the bifurcation point the marginally supercritical side
of the transition between dispersion and black holes exhibits a fine structure which is due to
the competition between two coexisting critical solutions, the DSS one and the CSS one.
The description of this phenomenon and its interpretation is the main purpose of this paper.
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The rest of the paper is organized as follows. For convenience, in section 2 we first briefly
repeat the basic setting of the model and then we summarize what is known about it. In
section 3 we present numerical results and finally, in section 4, we interpret them.

2. The model

The spherically symmetric Einstein–SU(2)–σ system is parametrized by three functions: the
metric coefficients A(t, r), δ(t, r) and the σ -field F(t, r), which satisfy the following system
of equations (see [2]) for the derivation):

�gF − sin(2F)

r2
= 0, �g = −eδ∂t (e

δA−1∂t ) +
eδ

r2
∂r(r

2e−δA ∂r), (1)

∂tA = −2η rA(∂tF )(∂rF ), (2)

∂rδ = −η r
(
(∂rF )2 + A−2e2δ(∂tF )2

)
, (3)

∂rA = 1 − A

r
− η r

(
A(∂rF )2 + A−1e2δ(∂tF )2 + 2

sin2F

r2

)
, (4)

where η is a dimensionless coupling constant. For η = 0 this system reduces to the σ

model in Minkowski spacetime. The initial value problem for this system was studied by
Bizoń et al [9] for η = 0 and by Husa et al [1] for η > 0. In these studies an
important role is played by self-similar solutions. A countable family of continuously self-
similar (CSS) solutions, hereafter denoted by CSSn (n = 0, 1, . . .), was shown to exist for
0 � η < 0.5 in [2, 5, 10]. These solutions are regular within the past light cone of the
singularity, however they have a spacelike hypersurface of marginally trapped surfaces, i.e.
an apparent horizon outside the past light cone if η > ηn, where ηn is an increasing sequence
(η0 = 0.08, η1 = 0.152, etc). Linear stability analysis shows that the ‘ground state’ CSS0 is
stable while the excitations CSSn have exactly n unstable modes.

Besides the CSS solutions, the system (1)–(4) has also a discretely self-similar (DSS)
solution for η � ηc ≈ 0.17. This solution was constructed by Lechner [3] via a pseudospectral
method following the lines of Gundlach [8].

Next, we summarize what is known about the critical behaviour in gravitational collapse
in this model. The first numerical studies of this problem, reported in [1], focused on
relatively large coupling constants η > 0.2. In this range a ‘clean’ type-II critical DSS
behaviour was observed; however the attempts to resolve critical evolutions for lower values
of η encountered numerical difficulties and for 0.18 < η < 0.2 only an approximate DSS
behaviour was observed. Furthermore the echoing period � was found to increase sharply as
the coupling constant decreases from 0.5 to 0.18. The critical behaviour for smaller couplings
0.1 < η < 0.2 was studied in [4] (still smaller couplings are less interesting because then
the model admits naked singularities). In the range 0.1 < η < 0.14 a ‘clean’ CSS critical
behaviour was observed; thus it became clear that somewhere in the interval 0.14 < η < 0.2
there must be a transition between CSS and DSS critical solutions. The detailed studies of
this transition [4] led to a conjecture that there exists a critical value of the coupling constant
ηc ≈ 0.17 for which the system exhibits the homoclinic loop bifurcation, i.e. the CSS saddle
merges with the DSS limit cycle in the phase space. These results left open the question
which of the two solutions in the transition region acts as the critical solution at the threshold
of black-hole formation. In particular, near the bifurcation point the black-hole mass scaling
could not be properly resolved.
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Figure 1. For η = 0.1725 we show �r and �t as functions of the cycle number N. Fitting the
curve � + c e−N to the data we obtain � ≈ 1.803.

3. Numerical results

We have solved equations (1)–(4) for marginally critical initial data fine tuned to the DSS
solution for coupling constants close to the critical value ηc = 0.17. Since the echoing
period � increases sharply as the coupling constant tends to its critical value from above, it
becomes more and more difficult to follow the evolution over a large number of DSS cycles4.
We used the fully constrained implicit evolution scheme based on the second order accurate
finite-difference Newton–Raphson scheme. In order to resolve the singular behaviour near the
origin we used the grid which is uniform in ln(r). To get several cycles of the DSS attractor
near the bifurcation point we had to fine tune parameters of initial data with a precision of 70
digits—this was achieved with the help of the Arprec Library [11]

Actually, it was not our aim to determine � with high precision, but rather to show
that there exists a � to which the evolution converges. To this end, we determine � as a
function of time (cycles) as the evolution approaches the limit cycle, i.e. the DSS solution.
For a marginally critical solution we plot the function F versus ln(r) for some late time t1 and
superimpose the profile of the first echo at time t2 shifted by ln(r) → ln(r) + �r . The time t2
and the radial echoing period �r are chosen to minimize the discrepancy between two profiles.
We also define the temporal echoing period �t by the formula t2 = t∗(1 − e−�t ) + e−�t t1,
where t∗ is the accumulation time. Repeating this calculation for a sequence of pairs (tn, tn+1),
we get a sequence of values �r and �t . Of course, if the evolution converges to the DSS
solution, both �r and �t should converge to the same constant. In figure 1 we show the
convergence of �r and �t during a critical evolution for the coupling constant η = 0.1725.
Note that the curve levels off, thus signalling the closeness of the evolution to the limit cycle.
As the coupling constant decreases, � grows (see figure 2) and the approach to the DSS
solution becomes slower.

Let p∗ be a critical parameter value which separates dispersion from black holes (this
value can be found by standard bisection). In agreement with [1] we find that for η > 0.17
the solution corresponding to p∗ is DSS, in particular for p slightly below p∗ we observe DSS
subcriticality, i.e. the solution approaches the DSS solution and then disperses. Looking at the

4 By an elementary dimensional analysis the number of cycles scales as N ∼ −(1/λ�) ln |p − p∗|, where � is the
echoing period and λ is the eigenvalue of the growing mode of the DSS solution.
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Figure 2. Fitting the echoing period � (determined as in figure 1) to the analytic prediction
� = a ln |η − ηc| + const. we get ηc = 0.1701 and the slope a = −0.389 which is in very
good agreement with the analytic prediction a = −2/λCSS and the linear perturbation result [3]
λCSS(ηc) ≈ 5.14.
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Figure 3. The subcritical scaling (5) for the coupling constant η = 0.19. The slope of the linear
fit is approximately equal to −0.109. The wiggles, which are imprints of discrete self-similarity,
have the period ≈4.8.

maximum value of the spatial derivative of the scalar field at the origin as a function of p, we
find a typical subcritical scaling law (see figure 3)

max|∂rF (t, 0)| ∼ (p∗ − p)−γDSS . (5)

For p > p∗ black holes are formed, however this happens in a rather unusual manner.
This is shown in figure 4 where the metric function A is seen to develop two minima very
close to zero which signals an almost simultaneous formation of a small and a large marginally
trapped surface.
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Figure 4. The series of snapshots of the metric function A(t, r) from the evolution of marginally
supercritical initial data for the coupling constant η = 0.19. In the last frame one can see the
formation of two apparent horizons.
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Figure 5. η = 0.19. (a) The locus of the outer apparent horizon is shown to satisfy the power law
(6) with the slope γDSS = 0.109. The wiggles superimposed on the linear fit have the period 4.8
which agrees with the analytic prediction �/2γDSS. (b) The locus of the inner horizon does not
follow a power law. The jump discontinuities are periodic with the period 4.8.

Let us denote their apparent horizon radii by rin and rout, respectively. We find that the
outer radius exhibits the standard DSS supercritical scaling (see figure 5(a))

rout ∼ (p − p∗)γDSS , (6)

but the inner radius does not seem to scale. The latter fact was already mentioned in [4].
The corresponding graph shows a see-saw structure, i.e. short straight lines with jump
discontinuities at certain values of the parameter p (see figure 5(b)).
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Figure 6. η = 0.19. (a) The supercritical (8) and (b) subcritical (9) scalings around pn for n = 2
(we get the same picture for each n). The slopes of the linear fits are equal to ±0.195 which agrees
with the analytic prediction ±1/λCSS where λCSS(η = 0.19) = 5.1 was obtained independently
from the linear perturbation theory by Lechner [3].

Table 1. The first five critical parameter values pn for the coupling constant η = 0.19.

n 1 2 3 4 5 ∞
pn 0.529 001 923 689 0.528 771 570 563 0.528 769 577 618 0.528 769 560 376 0.528 769 560 227 0.528 769 560 226

In order to understand this strange behaviour we looked in more detail at the evolution
of initial data fine tuned to the location of these jumps. With the help of arbitrary precision
numerical methods we found the following remarkable structure: for a given family of initial
data there is a sequence of discrete parameter values p1 > p2 > p3 · · · > pn such that a
solution with p ∈ (pn, pn+1) approaches the CSS1 solution n times, i.e. the solution comes
close to the CSS1 solution, turns away and returns n times before leading to black-hole
formation. Multiple approaches to the CSS1 solution were already noted in [4] where they
were called episodic CSS; however the corresponding fine structure in the parameter space
was not seen there. The sequence {pn} with n � 5 is listed in table 1.

Because of numerical limitations we were not able to resolve higher pn, however the data
shown in table 1 seem to indicate that the sequence pn converges to p∗ as n tends to infinity.
Actually, we find that the two consecutive parameters pn satisfy the scaling law

pn − p∗

pn+1 − p∗ ≈ exp

(
�

2γDSS

)
. (7)

Now we return to the problem of scaling of the inner horizon radius rin. For p = pn + ε, i.e.
for p just above one of the pn we see a clear CSS scaling (see figure 6(a))

rin ∼ (p − pn)
γCSS . (8)

For p = pn−ε the solution displays a kind of pseudo-dispersion after its last CSS episode. This
pseudo-dispersion manifests itself as follows: after leaving the CSS solution, the maximum of
the function F decreases, the inner minimum of A disappears and later a spike develops which
leads to the formation of an apparent horizon at rout. In this range of p we see the subcritical
CSS scaling (see figure 6(b))

max|∂rF (t, 0)| ∼ (pn − p)−γCSS , (9)
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Figure 7. (a) Shil’nikov bifurcation. (b) The conjectured phase space picture.

however the masses of black holes formed in such evolutions are ‘large’ and do not scale. We
remark that since the solutions on both sides of pn form black holes, the bisection which gives
critical parameter values pn has to be performed in a sense ‘by hand’.

4. Interpretation of numerical results

The results presented above confirm and extend the findings of Lechner et al [4]. Probing the
bifurcation point ηc with higher accuracy we improved the evidence that � diverges as η tends
to the critical value ηc = 0.17 from above, which in turn confirms the picture that the DSS
cycle merges with the CSS solution at the critical coupling constant ηc. A natural question is:
what is the meaning of the series of critical parameter values pn within this picture?

We conjecture that our system shows a so-called Shil’nikov bifurcation [12]. In his
classification of loop bifurcations for three-dimensional systems, Shil’nikov considered a
system with a saddle point together with a homoclinic orbit which bifurcates for some value
of a parameter. Assuming that the eigenvalues of the saddle point are real and satisfy the
following conditions: λ1 > 0 > λ2 > λ3 and λ1 + λ2 > 0 (plus some less important technical
conditions), Shil’nikov showed that a saddle limit cycle bifurcates and the phase space picture
looks qualitatively as in figure 7(a).

Of course, our system is infinite dimensional and the Shil’nikov theorem cannot be
applied directly. Nevertheless, it is expected that a similar picture to figure 7(a) will be valid
for higher-dimensional systems as long as only a few largest eigenvalues of the perturbation
matter. Recently, Donninger [13] has studied linear perturbations around the CSS solution
and found that for coupling constants around the critical value ηc the first three largest
eigenvalues do in fact satisfy the above-stated Shil’nikov conditions. Combining this property
with the fact that the bifurcating DSS solution is a saddle limit cycle, we conjecture that
the (one-dimensional) unstable manifold of the DSS solution lies on the stable manifold of the
neighbouring CSS solution. This is sketched in figure 7(b). More precisely, the DSS unstable
manifold winds around the limit cycle (infinitely many times) and eventually runs into the
CSS saddle. Suppose that a curve of initial data intersects this spiral manifold at values pn,
with lim pn = p∗, where p∗ corresponds to the intersection with the limit cycle. Then, the
dynamical behaviour will have exactly the form we observed above: for p equal to one of the
pn, the solution spirals n times around the limit cycle each time coming closer to the CSS
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saddle before hitting it. For p = pn ± ε, the behaviour is similar, except that the solution does
not hit the CSS saddle but escapes along its unstable manifold. This is the reason why one
observes the CSS scaling around pn with an exponent related to the unstable eigenvalue of
the CSS solution. Note that the scaling law (7) follows immediately from the picture shown
in figure 7(b) because during one cycle of evolution the distance from the DSS limit cycle
increases by the factor eλDSS� (and γDSS = 1/λDSS).
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