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Abstract
We give a very short proof that the vacuum Einstein equations in 4+1 dimensions
have no cohomogeneity-two Bianchi IX continuously self-similar solutions.

PACS numbers: 04.20.Jb, 04.50.−h

1. Introduction

In a recent paper [1] it was shown that in five spacetime dimensions one can perform a consistent
cohomogeneity-two symmetry reduction of the vacuum Einstein equations which—in contrast
to the spherically symmetric reduction—admits time-dependent asymptotically flat solutions.
The key idea was to modify the standard spherically symmetric ansatz by replacing the round
metric on the three-sphere with the homogeneously squashed metric, thereby breaking the
SO(4) isometry to SO(3)×U(1). In this way the squashing parameter becomes a dynamical
degree of freedom and Birkhoff’s theorem is evaded. This model (which we shall refer to as the
BCS model) provides a simple theoretical setting for studying the dynamics of gravitational
collapse in vacuum. Numerical simulations indicate that the spherically symmetric solutions,
Minkowski and Schwarzschild, play the role of attractors in the evolution of generic regular
initial data (small and large ones, respectively) and the transition between these two outcomes
of evolution exhibits a discretely self-similar critical behavior [1]. In this respect the BCS
model is very similar to the Einstein-massless scalar field system [2–4]. However, there is
one interesting difference between these two models which we want to point out here. The
difference is concerned with the existence of continuously self-similar (CSS) solutions. In [5]
Christodoulou proved that the Einstein-massless scalar field system possesses CSS solutions.
These solutions, suitably truncated, provide examples of naked singularities developing from
regular initial data (however, being unstable [6], they do not contradict the weak cosmic
censorship conjecture). We will show below that the BCS model has no CSS solutions. This
result indicates that the CSS naked singularities found by Christodoulou for the self-gravitating
massless scalar field are, in a sense, matter generated (mathematically, they are related to the
fact that only derivatives of the scalar field appear in the equations).

0264-9381/10/122001+03$30.00 © 2010 IOP Publishing Ltd Printed in the UK & the USA 1

http://dx.doi.org/10.1088/0264-9381/27/12/122001
http://stacks.iop.org/CQG/27/122001


Class. Quantum Grav. 27 (2010) 122001 Fast Track Communication

2. The BCS ansatz and self-similarity

After [1] we parametrize the metric as follows:

ds2 = −A e−2δ dt2 + A−1 dr2 + 1
4 r2

(
e2B

(
σ 2

1 + σ 2
2

)
+ e−4Bσ 2

3

)
, (1)

where A, δ, and B are the functions of (t, r), and σi are left invariant one-forms on SU(2)

which in terms of the Euler angles take the form

σ1 = cos ψ dθ + sin ψ sin θ dφ,

σ2 = − sin ψ dθ + cos ψ sin θ dφ, σ3 = dψ + cos θ dφ.
(2)

Substituting this ansatz into the vacuum Einstein equations we get the following system of
PDEs:

∂rA = −2A

r
+

2

3r
(4 e−2B − e−8B) − 2r(e2δA−1(∂tB)2 + A(∂rB)2), (3)

∂tA = −4rA (∂tB) (∂rB), (4)

∂rδ = −2r(e2δA−2(∂tB)2 + (∂rB)2), (5)

∂t (e
δA−1r3∂tB) = ∂r(e

−δAr3∂rB) +
4

3
e−δr(e−2B − e−8B). (6)

These equations have the scaling symmetry (t, r) → (λt, λr) so it is natural to look for
continuously self-similar (CSS) solutions, that is, solutions which are scale invariant. Such
solutions depend on a single variable ρ = r/t and then the system (3)–(6) reduces to ordinary
differential equations (where prime is d/dρ and Z = eδρ/A)

ρA′ = −2A +
2

3
(4 e−2B − e−8B) − 2ρ2A(1 + Z2)B ′2, (7)

A′ = −4ρAB ′2, (8)

ρZ′ = Z + 2Z(1 − Z2)ρ2B ′2, (9)

B ′′ = (2Z2 − 3)B ′ + 2ρ2(1 − Z4)B ′3

ρ(1 − Z2)
+

4

3

e−2B − e−8B

ρ2A(1 − Z2)
. (10)

The combination of equations (7) and (8) yields the constraint

3A − 3A(1 − Z2)ρ2B ′2 − 4 e−2B + e−8B = 0. (11)

We are interested in regular solutions, where ‘regular’ means twice continuously differentiable.
At the origin regular solutions must satisfy the following initial conditions:

B(ρ) ∼ bρ2, A(ρ) ∼ 1 − 4b2ρ4, Z(ρ) ∼ ρ, (12)

where we used the remaining scaling freedom to set Z′(0) = 1 for convenience. It follows
from (12) and equation (9) that if Z < 1, then Z(ρ) � ρ; hence, there is a ρ0 such that
Z(ρ0) = 1. Geometrically, ρ0 corresponds to the similarity horizon (the light cone of the
singularity).

Proof. We will show that solutions starting from initial conditions (12) cannot be regular
at ρ0. Assume for contradiction that the solution (A(ρ), Z(ρ), B(ρ)) is regular on the closed
interval I = {ρ : 0 � ρ � ρ0}. First, note that the function A is positive on I since from
equation (8) we have A(ρ) = exp

(−4
∫ ρ

0 sB ′(s)2 ds
)
. Second, it follows from equation (10)
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that if B ′(ρ1) = 0 for some ρ1, then B ′′(ρ1) has the same sign as B(ρ1). Thus, the function
B(ρ) is monotone on I and B ′(ρ) has the sign of b. Next, let us define the function

H = 8 e−2B − 5 e−8B − 3ρAB ′ − 3A. (13)

With the use of this function (which we found by an arduous trial and error), the rest of the
proof amounts to a one-line exercise in elementary calculus. The initial conditions (12) imply
that H(ρ) ∼ 9bρ2 near the origin. Differentiating H and using the constraint (11), we obtain

H ′ +

(
1

ρ(1 − Z2)
+ 3B ′

)
H = 27 e−8BB ′. (14)

Hence, H(ρ) cannot have a zero for ρ < ρ0 because if H(ρ) = 0, then H ′(ρ) has the same
sign as B ′(ρ) and therefore b. Similarly, H(ρ0) cannot vanish because L’Hopital’s rule gives
H ′(ρ0) = 54 e−2B(ρ0)B ′(ρ0). However, H(ρ0) must vanish for regular solutions, as follows
immediately from (14). This contradiction ends the proof. �
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