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Abstract
We consider the Cauchy problem for a spherically symmetric SU(2) Yang–
Mills field propagating outside the Schwarzschild black hole. Although
solutions starting from smooth finite energy initial data remain smooth for
all times, not all of them scatter since there are non-generic solutions which
asymptotically tend towards unstable static solutions. We show that a static
solution with one unstable mode appears as an intermediate attractor in the
evolution of initial data near a border between basins of attraction of two
different vacuum states. We study the saddle-point dynamics near this attractor;
in particular, we identify the universal phases of evolution: the ringdown
approach, the exponential departure and the eventual decay to one of the vacuum
states.

PACS numbers: 04.70.Bw, 04.25.dc

1. Introduction

It is well known that solutions of Yang–Mills equations in four-dimensional Minkowski
spacetime are globally regular in time for reasonable initial data. This fact was first proved by
Eardley and Moncrief for smooth data [1] and later strengthened by Klainerman and Machedon
for finite energy data [2]. Due to the work of Christodoulou [3] and Glassey and Strauss [4] it
is also known that the energy of the Yang–Mills field in any bounded region of flat spacetime
decays to zero and that all solutions scatter.

A natural question is whether these properties remain valid in a curved background. Part of
this question was answered affirmatively by Chruściel and Shatah who proved global regularity
of Yang–Mills equations on arbitrary globally hyperbolic four-dimensional spacetimes [5].
However, studies of Yang–Mills equations on the Schwarzschild background revealed a key
difference in comparison with the flat spacetime case: the equations admit static solutions
[6, 7], which implies that not all solutions scatter.
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The quantitative behavior of Yang–Mills fields on curved spacetimes seems under-
explored. The only results we are aware of are concerned with late-time tails for small
data solutions on the Schwarzschild background [8, 9].

The aim of this paper is to examine the Cauchy problem for large data solutions of the
Yang–Mills equations on the exterior Schwarzschild background. We investigate thoroughly
the role static solutions play in the dynamics. These solutions are unstable and therefore they
are not observed in the Cauchy development of generic initial data. We show, however, that
static solutions do participate in the evolution of specially prepared initial data. In particular,
the static solution with one unstable mode appears as an intermediate attractor in the evolution
of initial data near a border between basins of attraction of two different copies of the vacuum
solution. Solutions with data lying on this borderline tend asymptotically to the static solution
and therefore they do not scatter.

This behavior bears many similarities with critical phenomena in gravitational collapse
for the coupled Einstein–Yang–Mills system [10, 11], where the colored black hole with one
unstable mode appears as an intermediate attractor. In the case of a fixed background, the
problem is much simpler and thus amenable to a more detailed analytical description. In
particular, we show that for intermediate times the convergence to the static solution along
the codimension-1 stable manifold proceeds via quasinormal ringing. We also look at the
nonlinear bi-instability of the perturbed attractor and compute the energy fluxes through the
horizon and null infinity during its decay to vacuum.

The rest of the paper is organized as follows. In section 2 we introduce the model and
discuss its basic properties. In section 3 we discuss static solutions, their linearized instability
and quasinormal modes. Our main results, based on mixed analytical and numerical arguments,
are presented in section 4. We conclude with general remarks in section 5.

2. Preliminaries

2.1. The Schwarzschild metric

The Schwarzschild metric with mass m > 0 in standard coordinates (t̄ , r, ϑ, ϕ) reads

g = −N dt̄2 + N−1 dr2 + r2(dϑ2 + sin2 ϑ dϕ2), with N = 1 − 2m

r
. (1)

We restrict our attention to the exterior region r � rh = 2m. Hypersurfaces of constant time
coordinates all meet at the bifurcation sphere near the black hole and at spatial infinity in the
asymptotic domain. This pathological behavior, which is inconvenient for certain applications,
can be removed by introducing a new time coordinate

t = t̄ − h(r), (2)

with a suitable height function h [12]. Note that the new foliation by t respects the stationarity
of Schwarzschild spacetime, that is, the representation of the timelike Killing vector field
of Schwarzschild spacetime is invariant under the transformation (2), i.e. ∂ t̄ = ∂t . The
transformed metric takes the form

g = −N dt2 − 2 NH dt dr +
1 − (NH)2

N
dr2 + r2 (dϑ2 + sin2 ϑ dϕ2), (3)

where H(r) = h′(r). Most commonly employed coordinatizations of the Schwarzschild
spacetime lead to a metric of the above form. For example, the ingoing Eddington–
Finkelstein coordinates correspond to H = − 1

N
2m
r

. This choice of the height function
removes the pathological behavior at the horizon: the constant time hypersurfaces, instead
of intersecting at the bifurcation sphere as for Schwarzschild coordinates, foliate the event
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horizon. Consequently, all metric components are regular at the event horizon. The Painlevé–

Gullstrand coordinates are similar with H = − 1
N

√
2m
r

.
Analogously, hyperboloidal foliations with a suitable asymptotic behavior avoid the

pathological behavior at spatial infinity: the constant time hypersurfaces, instead of meeting
at spatial infinity, foliate future null infinity [13]. A special class of hyperboloidal foliations
is given by constant mean curvature (CMC) hypersurfaces [14]. For a suitable choice of
parameters they lead to constant time hypersurfaces which are regular both at the event
horizon and at infinity. The derivative of the height function for the CMC hypersurfaces reads

H = 1

N

J√
J 2 + N

, with J = Kr

3
− C

r2
, (4)

where K is the mean extrinsic curvature and C is an integration constant. For the foliation
to approach the future event horizon and the future null infinity, we choose K > 0 and
C > 8 m3K/3. The hyperboloidal CMC foliation is very well suited for our purposes and
will be used throughout the rest of the paper (though many expressions below are valid in any
foliation (2)).

2.2. Yang–Mills equations and the energy

For the SU(2) Yang–Mills potential A we assume the spherically symmetric ‘purely magnetic’
ansatz [15]

A = W τ1 dϑ + (cot ϑ τ3 + W τ2) sin ϑ dϕ, (5)

where τi are the generators of SU(2) and W = W(t, r). For this ansatz the Yang–Mills
curvature F = dA + [A,A] takes the form (hereafter˙= ∂t and ′ = ∂r )

F = Ẇ dt ∧ � + W ′ dr ∧ � − (1 − W 2) τ3 dϑ ∧ sin ϑ dφ, (6)

where � = τ1 dϑ + τ2 sin ϑ dϕ, and the Yang–Mills equation ∇αF αβ + [Aα, Fαβ] = 0 on the
Schwarzschild background with metric (3) becomes a scalar semilinear wave equation

1 − (NH)2

N
Ẅ + 2NHẆ ′ + (NH)′Ẇ = (NW ′)′ +

W(1 − W 2)

r2
. (7)

We are interested in the Cauchy problem for smooth compactly supported initial data. We
stress that no boundary condition is imposed at the horizon and the field W(t, rh) can evolve
freely which, in particular, allows for dynamical connections between two vacuum states
W = ±1. This behavior should be contrasted with the flat spacetime case where the vacuum
states are disconnected since the value of field at the origin is rigidly fixed to |W(t, r = 0)| = 1
by the smoothness condition.

Note that equation (7) has the reflection symmetry: if W (t, r) is a solution, so is −W(t, r).
As we shall see below, this discrete symmetry is a key feature which shapes the structure of
the phase space for equation (7).

Using the energy momentum tensor

Tαβ = 1

4π
Tr

(
F μ

α F β
μ − 1

4
gαβFμνF

μν

)
(8)

and the timelike Killing vector field ξ = ∂t , one can define the conserved current

J α = T α
β ξβ, ∇αJ α = 0. (9)
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Integration of the current over a constant time spatial hypersurface t yields the energy

E(t) :=
∫

t

J α dSα = −4π

∫ ∞

rh

T t
t r2 dr

=
∫ ∞

rh

[
1 − (NH)2

N
Ẇ 2 + NW ′2 +

(1 − W 2)2

2r2

]
dr . (10)

Differentiating the energy with respect to time and using equation (7) we get

Ė = 2(−NHẆ 2 + NW ′Ẇ )|∞rh
. (11)

In the hyperboloidal CMC coordinates (4) we have H(r) ∼ −N−1 near rh and H(∞) = 1;
hence,

Ė = −2Ẇ 2(t, rh) − 2Ẇ 2(t,∞). (12)

This expression shows that the energy is monotonically decreasing due to the energy flux
through the horizon and through future null infinity.

As mentioned above, solutions starting from smooth initial data remain smooth for all
future times and generically they scatter. However, the asymptotic completeness fails because
there exist non-generic solutions which do not disperse. Our goal is to analyze the non-
dispersive solutions in detail. It follows from the monotonicity formula for the total energy
(12) that the only possible mechanism of avoiding complete dispersion to vacuum is the
stabilization of evolution on a nontrivial static solution. The discussion of static solutions is a
subject of the next section.

We choose m/2 as a unit of length so hereafter rh = 2m = 1.

3. Static solutions and their perturbations

3.1. Static solutions

For static solutions equation (7) reduces to the ordinary differential equation(
1 − 1

r

)
W ′′ +

1

r2
W ′ +

W(1 − W 2)

r2
= 0. (13)

Note that this is the Euler–Lagrange equation for the static energy functional

E(W) =
∫ ∞

1

[(
1 − 1

r

)
W ′2 +

(1 − W 2)2

2r2

]
dr. (14)

Solutions of equation (13) that are smooth at the horizon behave near r = 1 as

W(r) = a − a(1 − a2)(r − 1) + O((r − 1)2), (15)

where a is a free parameter. It is not difficult to show using shooting methods that there is
a countable sequence of positive parameters an (n = 0, 1, . . .) such that the corresponding
solutions, denoted by Wn(r), exist for all r � 1 and tend to Wn(∞) = (−1)n. The index
n denotes the number of nodes of the solution Wn(r). These solutions can be obtained in
the decoupling limit from colored black hole solutions of the coupled Einstein–Yang–Mills
system [16] and the proof of their existence is implicit in the proof of existence of colored
black holes given in [17] (also see [7] for a variational argument). The solution W0 = 1 is the
ground state for which the energy has the global minimum E(W0) = 0. The solutions with
indices n > 0 can be viewed as excitations of the ground state; their energies En = E(Wn)

grow monotonically with n (E1 = 0.4795, E2 = 0.4994, E3 = 0.4999, . . .) and tend to the
limit E∞ = 1/2 which is the energy of the singular solution W∞ = 0. Note that due to

4



Class. Quantum Grav. 27 (2010) 175003 P Bizoń et al

the reflection symmetry each static solution (except W∞) exists in two copies ±Wn. It is
remarkable that the n = 1 solution has been found in closed form [6]:

W1(r) = c − r

r + 3(c − 1)
, c = 1

2
(3 +

√
3). (16)

3.2. Linear perturbations

In order to understand the role of static solutions in the evolution, we first need to examine
their linearized stability. To this end we substitute W(t, r) = Wn(r) + w(t, r) into
equation (7). Dropping quadratic and higher terms in w, we get the linear evolution equation
for small perturbations about the static solution Wn

1 − (NH)2

N
ẅ + 2NHẇ′ + (NH)′ẇ = (Nw′)′ +

1 − 3W 2
n

r2
w, (17)

which after separation of variables, w(t, r) = eλtv(r), leads to the eigenvalue problem

λ2 1 − (NH)2

N
v + 2λNHv′ + λ(NH)′v = (Nv′)′ +

1 − 3W 2
n

r2
v. (18)

For the eigenvalues to come about we must identify the admissible behavior of eigenmodes
at the endpoints r = 1 and r = ∞. This rather subtle issue has a particularly simple answer
in the hyperboloidal CMC foliation, where ‘admissible’ simply means ‘smooth’. The horizon
r = 1 is the regular singular point with the two linearly independent solutions behaving as
v ∼ (r − 1)α , where α = 0 or −2λ. Thus, assuming that −2λ is not a positive integer
(the absence of such algebraically special eigenvalues has been checked separately), only the
solution with α = 0 is admissible. Near the irregular singular point at infinity the admissible
solution behaves as v ∼ 1 (the second solution behaves as v ∼ e2λr ).

Remark. In terms of the new dependent variable u(r) = e−λh(r)v(r) (recall that h(r) is the
height function of the foliation (2)) the eigenvalue problem (18) takes the standard Sturm–
Liouville form (which is the same as in Schwarzschild coordinates)

Au = −λ2u, A = −N∂r (N∂r) − N

r2

(
1 − 3W 2

n

)
. (19)

The operator A is self-adjoint in the Hilbert space X = L2([1,∞), N−1 dr). For Re(λ) > 0
the admissible solution belongs to X; hence, Re(λ) > 0 implies that λ2 is real, and therefore
λ is real as well. However, for Re(λ) � 0 the admissible solution does not belong to X so in
this case no self-adjoint formulation is available and eigenvalues are in general complex.

Solving the eigenvalue problem (18) numerically for the first few solutions Wn we found
that the nth solution has exactly n positive eigenvalues (hence n unstable modes). Denoting
the spectrum of eigenvalues for the solution Wn by

{
λ

(n)
k

}
and ordering it by a decreasing real

part, we thus have

λ
(n)
0 > λ

(n)
1 > · · · > λ

(n)
n−1 > 0 > Re

(
λ(n)

n

)
> Re

(
λ

(n)
n+1

)
> · · · . (20)

Below we shall suppress the superscript (n) on eigenvalues whenever it is clear from the
context which static solution is considered.

The eigenfunctions with Re(λ) < 0 are called quasinormal modes. Numerical calculation
of quasinormal modes is difficult because for Re(λ) < 0 the ‘bad’ solutions, v ∼ (r − 1)−2λ

near r = 1 and v ∼ e2λr near r = ∞, are subdominant with respect to smooth solutions and
consequently it is difficult to keep track thereof. For solutions that are known in closed form
(like W 0 and W 1 in our case), an ingenious method of calculating quasinormal modes was
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Table 1. The first five eigenvalues for linear perturbations about solutions W 0 and W 1. The
eigenvalues λ

(0)
k are well known in the literature as � = 1 electromagnetic quasinormal modes

[19].

n λ
(n)
0 λ

(n)
1 λ

(n)
2 λ

(n)
3 λ

(n)
4

0 −0.1849 ± 0.4965i −0.5873 ± 0.4290i −1.0504 ± 0.3495i −1.5438 ± 0.2923i −2.0451 ± 0.2531i
1 0.232 43 −0.0401 ± 0.0422i −0.6282 ± 0.0139i −1.0770 ± 0.0214i −1.5495 ± 0.0223i

developed by Leaver [18]. In the case at hand this method works as follows. The mode which
is smooth at the horizon is represented by a power series v(z) = ∑

anz
n, where z = (r −1)/r .

Since there are no singularities inside the circle |z| < 1 in the complex plane, this power series
expansion is absolutely convergent for |z| < 1 but, in general, it diverges at z = 1. The
quantization of eigenvalues comes from the condition of convergence of the power series at
z = 1 which is fulfilled if and only if the coefficients an form a minimal solution of the
recurrence relation. Due to Pincherle’s theorem, relating the existence of a minimal solution
to the convergence of an infinite continued fraction, this leads to a transcendental equation
which is solved numerically. Using this method we calculated the first few eigenvalues for
solutions W 0 and W 1. The results are shown in table 1.

4. Numerical results

4.1. Evolution of generic data

We solve numerically the Cauchy problem for equation (7) for a compactly supported Gaussian
pulse around the vacuum state W = 1 with amplitude p. The numerical techniques are
similar to those applied in [9]. We use the method of lines with a fourth-order Runge–
Kutta time integration and eighth-order spatial finite differences. We employ hyperboloidal
scri-fixing coordinates ([20]) based on the CMC foliation given in (4) with the parameters
K = 0.5, C = 0.5. We use the radial coordinate ρ = r/(r + 1), which compactifies the
exterior Schwarzschild region 1 � r < ∞ into the finite interval 1/2 � ρ � 1. There are no
incoming characteristics into the simulation domain; therefore, no boundary conditions are
applied. At the boundaries of the simulation domain we use one-sided finite differencing. We
refer an interested reader to [9] for more details about the numerical method and the concrete
form of the symmetric hyperbolic system corresponding to equation (7).

For generic amplitudes the energy in any bounded region decays to zero and the solution
approaches one of the vacuum states W = ±1. The quantitative description of the late stages
of this relaxation process has been given in [8, 9]. For intermediate times the decay to vacuum
has the form of quasinormal ringing with the fundamental eigenvalue λ0 = −0.1849+0.4965i.
For late times, the nonlinear tail decaying as t−4 becomes uncovered.

Let us point out in passing an interesting difference between the evolution of small and
large energy initial data, as shown in figure 1. Namely, for large energy data, after the
direct signal passes through but before the ringdown, there is a clearly pronounced phase of
evolution during which an excess energy is radiated away in the form of nonlinear oscillations
with exponentially decreasing amplitude and frequency (see the inset on the right plot in
figure 1). The time span of this phase increases with energy. Such nonlinear oscillations are
a characteristic for large energy solutions of defocusing nonlinear wave equations and in our
opinion they deserve further investigation, but it will not be pursued here.

Since the initial datum is a perturbation of W = 1, for small amplitudes p all solutions
tend asymptotically to W = 1. However, as p grows, the endstate flips back and forth from

6
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Figure 1. The evolution of generic initial data (observed at ρobs = 2/3) with small (left) and
large (right) energy. After an initial transient phase depending on initial data, the solution
goes through a phase of exponentially damped oscillations (quasinormal ringing) and then a
polynomial decay (tail) to one of the vacuum states. The first quasinormal mode has the eigenvalue
λ0 = −0.1849 + 0.4965i. The tail falls off as t−4. For large energy the initial transient phase takes
longer: after the direct signal from the data passes through, there appear nonlinear oscillations
with exponentially decreasing amplitude and frequency (see the inset on the right plot).

10 20 30 40
p

1.0

0.5

0.5

1.0

W , r

Figure 2. The vacuum endstate of evolution as a function of initial amplitude p. The plot indicates
that the flip of vacuum state is asymptotically periodic in p (with the period depending on a family
of initial data).

one vacuum state to another, which indicates that the curve of initial data repeatedly intersects
a borderline between basins of attractions of two vacuum states. Figure 2 shows the final
state of evolution against the amplitude of initial data. The parameter space is partitioned
into windows of generic evolution. Somewhat surprisingly, the appearance of these windows
seems asymptotically periodic in p (although the period is not universal).

A natural question is what happens at the borderline between basins of attraction of two
vacuum states. This question is the subject of the next section.

4.2. Approach to and departure from the static solution W 1

In this section we give a quantitative description of non-generic solutions which do not
disperse. Using bisection we fine-tune the amplitude to one of the critical values of the
amplitude, which we denote by p∗. The evolution of such nearly critical initial data exhibits
a universal intermediate phase during which the solution hangs around the static solution W 1,
first approaching it and then departing from it. This is a typical behavior around a saddle
point. In other words, the solution W 1 plays the role of an intermediate attractor and its
codimension-1 stable manifold separates the basins of attraction of two vacuum states.

7
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0.001

0.1

W

50 100 150 200 250 300
t
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10 5

0.001

0.1

W

Figure 3. The evolution of initial data fine-tuned in quadruple precision to the border between
basins of attraction of two different vacuum states. To show pointwise convergence to and departure
from the static solution W 1, we plot the time derivative of the Yang–Mills potential Ẇ (t, ρ0) at
an arbitrarily chosen ρobs = 2/3 in half-logarithmic scale. On the left panel, after an initial
transient signal coming from initial data, one can distinguish three universal phases of evolution:
quasinormal ringdown to the attractor, exponential departure from the attractor and finally an
approach to one of the vacuum states. On the right panel, we fit the function (21) to the numerical
solution (small squares). Only the parameters c, A and δ are fitted; the remaining parameters
Re(λ1) = −0.040 103, Im(λ1) = 0.042 173 and λ0 = 0.232 43 are supplied by the linear stability
analysis from section 3.2.

The evolution near the intermediate attractor can be described quantitatively using the
results from section 3.2. We claim that for intermediate times the following approximation is
valid:

W(t, ρ) − W1(ρ) 	 c (p − p∗) eλ0t v0(ρ) + A e−|Re(λ1)|t sin(Im(λ1)t + δ) v1(ρ), (21)

where v0(ρ) and v1(ρ) are, respectively, the eigenfunction of the single unstable mode
with eigenvalue λ0 = 0.232 43 and the first quasinormal mode with the eigenvalue
λ1 = −0.040 103 + 0.042 173i. Other quasinormal modes are not included in (21) because
they are damped much faster (see table 1). In principle, expression (21) should also include
the contribution from the tail; however, for the intermediate times involved in our simulations,
the tail is negligible in comparison with the quasinormal mode so we omit it. The numerical
verification of the approximation (21) is shown in figure 3 where we plot the result of a
quadruple precision bisection study.

We can define a ‘lifetime’ T of the intermediate attractor as a span of time during which
the solution stays in some given neighborhood of the static solution W 1. The lifetime is
determined by the time in which the amplitude of the unstable mode grows to a given size,
that is, |p − p∗| eλ0T = O(1), which yields

T ∼ − 1

λ0
ln |p − p∗| as p → p∗. (22)

The numerical verification of this scaling law is shown in figure 4.
It follows from (22) that during the lifetime T the first quasinormal mode decays by the

factor

e−|Re(λ1)|T ∼ |p − p∗|
|Re(λ1)|

λ0 ; (23)

hence, for a given precision of bisection, the closest approach to the unstable attractor is
determined by the ratio of the damping rate of the first quasinormal mode (which governs the
rate of convergence to the attractor) and the eigenvalue of the unstable mode (which governs
the rate of departure from the attractor).

8
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10 25 10 21 10 17 10 13 10 9
p p

100

150

200

250

300
T

Figure 4. The lifetime T of the intermediate attractor W 1 as a function of the distance from the
critical amplitude in a half-logarithmic plot. The small squares correspond to numerical evolutions.
The simple least-squares fit depicted by the thin line gives λfit = 0.232 46, in excellent agreement
with formula (22) and the eigenvalue λ0 = 0.232 43 obtained via linear stability analysis.
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Figure 5. Energy fluxes through the event horizon (dashed curve) and through scri (solid curve)
during the nonlinear decay of the static solution W 1. The endstate of evolution is W = −1 (left)
and W = +1 (right). The corresponding integrated energy fluxes are given in table 2.

4.3. Nonlinear bi-instability of W 1

Having described the evolution for intermediate times we turn now to the description of
nonlinear decay of the intermediate attractor to one of the vacuum states. We ask: what
is the ratio of energy that falls into the black hole to the energy that disperses to infinity?
To study this question accurately we do not perform bisection, but start the evolution from
initial data having the form of the solution W 1 plus a small perturbation. Depending on the
direction of the perturbation, the endstate of evolution is W = −1 or W = +1. Note that in
the hyperboloidal scri-fixing foliation (in contrast to foliations whose leaves meet at spatial
infinity), the asymptotic value of the filed at scri, W(t, ρ = 1), can change continuously during
the evolution; in particular, the vacuum state at scri can change from one to another. In the case
at hand, we have W(0, ρ = 1) = −1 (since W1(ρ = 1) = −1 and the small perturbation is
compactly supported). Using expression (12) we compute the energy flux through the horizon
and through scri during the nonlinear decay of W 1 until the time t = 200. The results of this
computation are shown in figure 5 and table 2.

We find that if the endstate is W = −1 (no change of the vacuum state at scri) then most
of the total energy falls into the black hole (71%), while if the endstate is W = +1 most of the
energy escapes to infinity (82%). The total balance of radiated energy calculated numerically
is accurate up to 10−7, which is very reassuring. The remaining tiny fraction of energy is
radiated for t > 200 in the form of a tail. Since the tail at the horizon falls off faster than the
tail along scri, the error shown in the last column of table 2 is larger for the endstate +1 where
most of the energy is radiated to infinity.

9
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Table 2. The amount of energy radiated through the horizon and through scri obtained by integration
of energy fluxes shown in figure 5 up to t = 200. The initial energy of the static solution W 1 plus
a small perturbation is Einitial = 0.479 490 664.

Endstate Ehorizon Escri Eradiated Einitial − Eradiated

−1 0.342 252 2541 0.137 238 3912 0.479 490 645 +1.9 × 10−8

+1 0.085 182 4567 0.394 307 8254 0.479 490 282 +3.8 × 10−7

5. Discussion

The dynamics of the Yang–Mills field on four-dimensional Minkowski spacetime is rather
indistinctive as all solutions evolve in the same manner dispersing asymptotically to vacuum.
We hope to have convinced the reader that in the case of the Schwarzschild background, the
dynamics is much more interesting. This is due to the presence of the horizon which affects
the Cauchy problem in several respects. First, the horizon breaks scale invariance and thereby
allows for the existence of nontrivial static solutions. Second, the horizon makes the phase
space simply connected; in particular, the two vacuum states W = ±1 are homotopic which
makes it possible to perform bisection between their basins of attraction (in contrast to flat
space where the two vacuum states are separated by an infinite energy barrier). Finally, the
horizon acts as an absorption boundary and thus provides an additional (besides dispersion to
infinity) mechanism of dissipation of energy.

All the above features, combined with the fact that the static solution with a single unstable
mode is known as the closed form, make the Yang–Mills equation on the Schwarzschild
background an attractive toy-model for gaining better understanding of codimension-1
stationary attractors for nonlinear wave equations. Previous studies of such attractors,
performed mainly in the context of type I critical phenomena in gravitational collapse (see,
e.g., [10, 21]), have focused on the dynamics of departure from the attractor along the
unstable manifold1. To our knowledge, the present paper is the first one where convergence
to an unstable stationary attractor has been shown to proceed via quasinormal ringing for
intermediate times. Apart from the theoretical importance, this result has practical implications
for numerical searches of unstable attractors, as follows from formula (23).
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[7] Bizoń P 1994 Acta Phys. Polon. B 25 877
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