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Abstract
We construct compact initial data of constant mean curvature K̃  for Einstein’s 

4d vacuum equations  with Λ̂ = Λ− (K̃2/3) positive, where Λ is the 
cosmological constant, via the conformal method. To construct a transverse, 
trace-free (TT) momentum tensor explicitly we first observe that, if the 
seed manifold has two orthogonal Killing vectors, their symmetrized tensor 
product is a natural TT candidate. Without the orthogonality requirement, but 
on locally conformally flat seed manifolds there is a generalized construction 
for the momentum which also involves the derivatives of the Killing fields 
found in work by Beig and Krammer (2004 Class. Quantum Grav. 21 73). 
We consider in particular the round three sphere and classify the TT tensors 
resulting from all possible pairs of its six Killing vectors, focusing on the 
commuting case where the seed data are U(1)× U(1)—symmetric. As 
to solving the Lichnerowicz equation, we discuss in particular potential 
‘symmetry breaking’ by which we mean that solutions have less symmetries 
than the equation  itself; we compare with the case of the ‘round donut’ of 
topology S2 × S . In the absence of symmetry breaking, the Lichnerowicz 
equation for a U(1)× U(1) symmetric momentum on S3 reduces to an ODE. 
We analyze distinguished families of solutions and the resulting data via a 
combination of analytical and numerical techniques. Finally we investigate 
marginally trapped surfaces of toroidal topology in our data.
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1.  Introduction

We construct certain solutions of the initial value constraints in the compact case for the 
4d Einstein equations with cosmological constant Λ. Our tool is the conformal method (see  
[7, 15] for recent reviews). Simplifying the general procedure, we set out from a ‘seed mani-
fold’ defined as follows.

Definition 1.  A seed manifold (M, gij, Lij) consists of a compact 3-dim. manifold (M, gij) 
with smooth metric in the positive Yamabe class [18] and of a smooth tensor Lij on M which is 
transverse and traceless (TT; meaning gijLij = 0 = ∇iLij  where ∇ is the covariant derivative).

We wish to turn this into an initial data set of the following form:

Definition 2.  As CMC initial data (M̃, g̃ij, K̃ij) (i, j,= 1, 2, 3) for vacuum with cosmologi-
cal constant Λ we take a compact three-dim. Riemannian manifold M̃  with smooth metric 
g̃ij and smooth symmetric (0, 2)—tensor field K̃ij which has constant trace g̃ijK̃ij = K̃ = const  
and satisfies the constraints

R̃ = K̃ijK̃ij − K̃2 + 2Λ, ∇̃iK̃ij = 0.� (1)

Here ∇̃ and R̃ are the covariant derivative and the scalar curvature of g̃ij.

To do so we need a smooth positive solution φ of the Lichnerowicz equation
(
∆− 1

8
R
)
φ = −1

4
Λ̂φ5 − V2

8φ7� (2)

where ∆ = ∇i∇i and R are the Laplacian and the scalar curvature of gij, and we have defined 

Λ̂ = Λ− (K̃2/3) and V2 = LijLij. For every such φ the ‘physical’ quantities

g̃ij = φ4gij, K̃ij −
1
3

g̃ijK̃ = φ−2Lij� (3)

indeed satisfy the constraints (1). The quantities g̃ij and K̃ij become the induced metric and 
second fundamental form (with constant mean curvature K̃ ) of a spacelike slice in the space-
time resulting from evolution under the Λ− vacuum Einstein equations. For zero momentum 
V ≡ 0 equation (2) is equivalent to the Yamabe problem [18]. We restrict ourselves to con-
structing data for which Λ̂ > 0; see [7] for the case Λ̂ � 0.
Remark on notation. In what follows we abbreviate ‘CMC initial data’ by ‘data’ and the 
‘seed manifold’ by ‘seed’. Moreover, ‘solutions’ φ of (2) are always understood to be smooth 
and positive.

Needless to say, the non-linearities of (2) are unpleasant. On the other hand, it is precisely 
due to this structure that the conformal method is capable in principle of generating ‘interest-
ing’ data from trivial seeds. In order to commemorate the centenary of the work of our com-
patriot Friedrich Kottler [17] (The Cracow region was with Austro–Hungary at that time) we 
recall here the generation of time-symmetric (K̃ij ≡ 0) data for the Kottler (‘Schwarzschild–de 
Sitter’) solution from a trivial seed. Namely, we consider the ‘round unit donut’ S2 × S1 with a 
unit S2 and an S1- circumference B i.e.

ds2 =
(
dξ2 + dθ2 + sin2 θdϕ2) where ξ ∈ [0, B]� (4)

and solve (2) for V ≡ 0. Since R  =  2 there is the trivial solution φ ≡ Λ−1/4, but in addition we 
have k solutions of (2) if B ∈ (2πk, 2π(k + 1)] , (k ∈ N0) which break the U(1) symmetry of 
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the seed metric and of the equation. The concept of symmetry breaking used here is the obvi-
ous one, but see definition 7 below for the formal statement. Accordingly, there are k non-triv-

ial physical data (M̃, g̃ij) which contain j  pairs (1 � j � k) of maximal and minimal surfaces 
(see [25]). The resulting spacetime (which Kottler of course obtained like Schwarzschild, 
namely via a spherically symmetric ansatz to Einstein’s equations) then contains j  pairs of 
static ‘black hole’ and ‘cosmological’ horizons.

In this paper we focus on S3, which is another well-known example for the Yamabe prob-
lem. In this case there is even a 4-(continuous-) parameter family of non-trivial (i.e. symmetry 
breaking) solutions of (2) with V ≡ 0. Curiously, however, none of these solutions leads to 
new geometry, i.e. conformal rescaling just rescales the round sphere in a non-trivial way. We 
recall this in section 4.2.

The key issue in the present work is a natural way of constructing TT tensors on seed mani-
folds with continuous isometries (Killing vectors, KVs). The simplest case consists of any 
seed which enjoys a pair of orthogonal KVs Π and Υ, since their symmetrized tensor product

L�
ij = Π(iΥj)� (5)

is TT. Such orthogonal KVs are e.g. Π = ∂/∂ξ and Υ = ∂/∂ϕ on the donut (4). For a pair 
of general (but possibly parallel) KVs there is a generalisation of (5), which still yields a TT 
tensor provided (M, gij) is of constant curvature, i.e. 3 Rij = R gij . On the unit sphere (where 
R  =  6) in particular, it reads

L(Π,Υ)
ij = Π(iΥj) + (curlΠ)(i(curlΥ)j) −

1
3

gij
(
ΠkΥk + (curlΠ)k(curlΥ)k

)
.

� (6)
In this paper we define ‘curl’ via

(curlΠ)i :=
1
2
εi

jk∇jΠk� (7)

which is 1/2 of the standard definition but saves factors of 2 elsewhere. We call (6) ‘Beig–
Krammer-tensor’ in view of a more general construction [2] requiring just a conformal KV 
and a divergence-free vector, on any locally conformally flat manifold.

Restricting ourselves now to the round three sphere as a seed, our aim is to classify the 
momenta (6) which arise from all possible pairs of KVs. We first note that for two generic KVs 
on S3 the momentum term (6) (and hence the evolving spacetimes) will not have any sym-
metries whatsoever. As to classifying the special cases, the key is the unique decomposition 
of any KV Υ on S3 (see lemma 1) in terms of its self-dual (sd) and antiself-dual (asd) parts

Υ = Ω+ Σ� (8)

defined via curlΩ = Ω and curlΣ = −Σ. Our result reads as follows. (We omit obvious state-
ments which result from applying the (anti-)symmetry between sd and asd items):
Theorem 1. (Simplified version; for full statement see section 3.) Let Π and Υ be two 
Killing vectors on S3 (possibly parallel). Then the following holds:

	 I.	�The Λ−Taub-NUT case. If Π is self-dual, and if the anti-self dual parts of Π and Υ are 

proportional, L(Π, Υ)
ij  is SO(3)× U(1) invariant.

	 II.	�The homogeneous case. If Π is self-dual, L(Π, Υ)
ij  is SO(3) invariant.

	III.	�The U(1)× U(1) case. If Π and Υ commute, L(Π, Υ)
ij  is U(1)× U(1) invariant.

	IV.	�The U(1) case. If the antiself-dual parts of Π and Υ are proportional, L(Π, Ω)
ij  is U(1) 

invariant.

R Beig et alClass. Quantum Grav. 36 (2019) 215017
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As to solving the Lichnerowicz equation (2) with momentum term, the key result is due to 
Premoselli [24]. In essence (we recall the full statement in section 4.1) it reads as follows, 
in terms of a constant b ∈ R+ extracted arbitrarily from V = b V : there exists a b� ∈ (0,∞) 
such that (2) has at least two solutions for 0 < b < b�, precisely one solution for b = b�, and 
no solution for b > b�. While this result applies to seeds without any symmetry restrictions, 
it settles in particular existence and non-existence in the cases of present interest, namely S3 
and S2 × S.

We are now particularly interested if the ‘symmetry breaking’ mechanism discussed above 
for the Yamabe problem (b  =  0) persists for b �= 0. This is indeed the case in the above-
mentioned S2 × S-example—in particular ‘rotating Kottler data’ arise in a natural way by 
solving (2) on the donut (4), with a momentum given by (5) (see [4] and section 4.3 below). 
On the other hand, on S3 it seems that the symmetry breaking Yamabe solutions mentioned 
before, and discussed at length in section 4.2, do not survive the addition of any momentum 
term. More precisely, our findings in the cases listed in theorem 1 are as follows: in the homo-
geneous case (which clearly includes Λ-Taub-NUT) we have V2 = const . From a theorem by 
Brezis and Li [6], this implies φ = const for solutions of (2), which yields an algebraic equa-
tion for φ. On the other hand, for the U(1)× U(1)- invariant momenta of point III above, the 
commuting Killing fields span a torus, and V  depends only on one variable x labelling a toroi-
dal foliation of S3. Combining numerical techniques with analysis we claim that there are no 
symmetry breaking solutions for b �= 0. More precisely, we conjecture (see conjecture 2 for 
which we give a partial proof) that φ only depends on x as well, whence (2) reduces to an ODE 
whose observed solutions are just a ‘Premoselli pair’ for every b < b� (see conjecture 1).  
We display numerical results in the cases that Π and Υ are orthogonal and parallel.

The final section 5 deals with marginally (outer) trapped surfaces (MTSs, MOTSs) and 
marginally trapped regions (MTRs). The former are two-surfaces S  defined by Θ̃± = 0 for at 
least one of the null expansions Θ̃± on S , while the latter are regions bounded by MTSs. Our 
motivation comes from a recent criterion for the ‘visibility’ of such MOTSs and MTSs from 
timelike infinity in asymptotically de Sitter spacetimes, theorem 2.5. of [8]. We first review 
this result and discuss it in detail for toroidal MOTSs and MTRs in de Sitter spacetime. We 
next note that an extension of this discussion to perturbations of de Sitter seems feasible by 
virtue of Friedrich’s general stability results [12]; we formulate a corresponding conjecture. 
Finally we consider the U(1)× U(1)- symmetric data constructed in section 4.2 in the three 
special cases of Λ− Taub-NUT, and for Π and Υ orthogonal and parallel. These data form 
one-parameter families in which we can locate toroidal MOTSs analytically (Λ− Taub NUT) 
or numerically in the other cases. While the orthogonal case only yields the same (Clifford-) 
torus as de Sitter itself, the MOTSs are quite non-trivial in the parallel case. We leave a dis-
cussion of the ‘visibility results’ for such MOTSs and MTRs in the near-de Sitter setting to 
future work.

2. The three sphere and its symmetries

The subsequent discussion of S3 is adapted to our construction (6) of TT momenta discussed 
in detail the next section, and focuses accordingly on pairs of KVs. While our presentation is 
largely coordinate independent (in this section, we require coordinates in the proof of lemma 
3 only) coordinate expressions are included occasionally to increase clarity. The most useful 
ones for our purposes are the following.

R Beig et alClass. Quantum Grav. 36 (2019) 215017
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We restrict ourselves to the unit sphere embedded in flat R4, viz.

ds2 = dz2
1 + dz3

2 + dz2
3 + dz2

4 z2
1 + z3

2 + z2
3 + z2

4 = 1.� (9)

We define ‘toroidal coordinates’ (τ , γ , ξ) τ ∈ (0,π/2), γ, ξ ∈ (0, 2π) by

z1 = sin τ sin γ, z2 = sin τ cos γ, z3 = cos τ sin ξ, z4 = cos τ cos ξ� (10)

which yields

ds2 = dτ 2 + sin2 τdγ2 + cos2 τdξ2.� (11)

The name originates in the toroidal foliation τ = const.
The Riemann and Ricci tensors and the scalar curvature are given by

Rijkl = 2gk[igj]l, Rij = 2gij, R = 6.� (12)

We write scalar products as 〈Π,Υ〉 = ΠiΥ
i, the vector product as (Π×Υ)i = εi

jkΠjΥk  and 
the commutator (Lie bracket) [Π,Υ] j = Πi∇iΥ

j −Υi∇iΠ
j  is also standard. There are six 

independent KVs which satisfy

∇i∇jΠk = −2gi[ jΠk].� (13)

Next observe that curl defined by (7) maps KVs into KVs and satisfies curl curl = 1 on 
KVs. This leads to the following key definition

Definition 3.  We call Killing vectors Ω,Σ selfdual (sd) or antiself-dual (asd) when they 
obey curlΩ = Ω resp. curlΣ = −Σ.

The Lie bracket of KVs can be written as

[Π,Υ] = (curlΥ)×Π− (curlΠ)×Υ.� (14)

Thus KVs which are curls of each other commute. Furthermore it follows that

[curlΠ,Υ] = [Π, curlΥ],� (15)

so that sd and asd KVs also commute. We next note the identity

curl (Π×Υ) =
1
2
(Π divΥ−Υ divΠ− [Π,Υ])� (16)

valid for arbitrary vector fields Π,Υ, which obviously reduces to

curl (Π×Υ) = −1
2
[Π,Υ]� (17)

for KVs. Still for KVs, (14), (15) and (17) now imply

curl [Π,Υ] = [Π, curlΥ] = [curlΠ,Υ].� (18)

The Cartan–Killing metric is proportional to

G(Π,Υ) =
1
2
(〈Π,Υ〉+ 〈curlΠ, curlΥ〉) .� (19)

Given Killing vectors Π,Υ, the expression (19) is constant on M. It is positive definite and 
curl is self-adjoint w.r. to G , i.e.

G(curlΠ,Υ) = G(Π, curlΥ).� (20)

It has thus real eigenvalues, namely ±1 (which we knew already) and we obtain the following 
result.

R Beig et alClass. Quantum Grav. 36 (2019) 215017
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Lemma 1.  The Lie algebra of Killing vectors in S3 decomposes into a direct sum of self-
dual and antiself-dual Killing vectors satisfying respectively curlΠ = ±Π. In other words we 
can write every Killing vector Π uniquely as

Π = Ω+ Σ� (21)

where Ω is self-dual and Σ is antiself-dual. Moreover, we have

‖Ω‖2 = G(Ω,Ω) = 〈Ω,Ω〉 = const ‖Σ‖2 = G(Σ,Σ) = 〈Σ,Σ〉 = const.
� (22)

We note that the decomposition (21) is orthogonal w.r. to the Cartan–Killing metric, while 
there is no orthogonality w.r.t. to gij: 〈Ω,Σ〉 �= 0.

We continue with another straightforward result.

Lemma 2.  Killing vectors Π and Υ on S3 commute iff the self-dual as well as the antiself-
dual parts (21) of Π and Υ are linearly dependent. In terms of the decomposition (21) this 
means that (possibly after interchanging Π and Υ) there exist constants u ∈ R , v ∈ R with

Π = uΩ+ Σ, Υ = Ω+ vΣ.� (23)

Remark. The statement above includes in particular all pairs involving sd and asd KVs (one 
has to put either u = v = 0, or Σ = 0, or Ω = 0).

Proof.  Inserting the sd-asd decomposition

Π = ΩΠ +ΣΠ Υ = ΩΥ +ΣΥ� (24)

into (14) and using [Π,Υ] = 0, yields

ΩΠ × ΩΥ = ΣΠ × ΣΥ.� (25)

But (14) and (17) imply that the vector product of KVs preserves the sd and asd subspaces. 
This implies that both sides of (25) vanish which yields the result.� □ 

We next choose bases ΩA and ΣA (capital latin indices take values 1, 2, 3; upper and lower 
indices mean the same) which are orthonormal w.r. to the Killing–Cartan metric. For the 
standard scalar product this implies

〈ΩA,ΩB〉 = δAB, 〈ΣA,ΣB〉 = δAB� (26)

[ΩA,ΩB] = −2εAB
C ΩC, [ΣA,ΣB] = 2εAB

C ΣC, [ΩA,ΣB] = 0,� (27)

where εABC = ε[ABC], ε123 = 1 and, of course, curlΩA = ΩA and curlΣA = −ΣA. Equation (27) 
means that the sd and asd subspaces form SO(3) Lie algebras, while all pairs with opposite 
duality commute. The different signs in the commutators are the natural convention in view 
of (14) which implies [ΩA,ΩB] = −ΩA × ΩB  but [ΣA,ΣB] = ΣA × ΣB. Then the remaining 

freedom in {ΩA,ΣB} are SO(3) - transformations OA
B, ÔA

B of the form

ΩA′ = OA
B Ω

B, ΣA′ = ÔA
B Σ

B, OA
BO B

C = δA
C, ÔA

BÔ B
C = δA

C.
� (28)

The vectors {ΩA,ΣA} act transitively on the S3.
In terms of the coordinates introduced in (10) and in terms of ‘contravariant’ components 

ΩA = ΩA i(∂/∂xi), ΣA = ΣA i(∂/∂xi), ordered as (τ , γ, ξ), they read

R Beig et alClass. Quantum Grav. 36 (2019) 215017
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Ω1 =




cos(γ + ξ)

− cot τ sin(γ + ξ)

tan τ sin(γ + ξ)


 Ω2 =




sin(γ + ξ)

cot τ cos(γ + ξ)

− tan τ cos(γ + ξ)


 Ω3 =




0
1
1




�

(29)

Σ1 =




− cos(γ − ξ)

cot τ sin(γ − ξ)

tan τ sin(γ − ξ)


 Σ2 =




− sin(γ − ξ)

− cot τ cos(γ − ξ)

− tan τ cos(γ − ξ)


 Σ3 =




0
−1
1


 .� (30)

We now proceed with a more subtle result.

Lemma 3.  Suppose the Killing vectors Π and Υ on S3 are orthogonal. Then either

	 1.	�both are either self- or antiself-dual, or
	 2.	�there are self and antiself-dual KVs Ω and Σ with ‖Ω‖ = ‖Σ‖ and a constant c ∈ R \ {0} 

such that

Π = Ω+ Σ, Υ = c(Ω− Σ).� (31)

Proof.  In terms of the decomposition

Π = cAΩ
A + dBΣ

B, Υ = cAΩ
A + dBΣ

B� (32)

with constants cA, dB, cA, dB, hAB = (cAdB + cAdB) the requirement reads

0 = 〈Π,Σ〉 = cAcA + dAdA + hAB〈ΩA, ΣB〉.� (33)

Using the explicit forms (29) and (30) we obtain from (33)

0 = cAcA + dAdA − [h11 cos(γ + ξ) cos(γ − ξ) + h21 sin(γ + ξ) cos(γ − ξ)

+ h12 sin(γ − ξ) cos(γ + ξ) + h22 sin(γ + ξ) sin(γ − ξ)]

+ sin(2τ)[h13 sin(γ + ξ) + h31 sin(γ − ξ)− h32 cos(γ − ξ)− h23 cos(γ + ξ)]

+ cos(2τ)[−h11 sin(γ + ξ) sin(γ − ξ) + h21 sin(γ − ξ) cos(γ + ξ)

+ h12 sin(γ + ξ) cos(γ − ξ)− h22 cos(γ + ξ) cos(γ − ξ) + h33]
�

(34)

for all (τ , γ, ξ). From this we first conclude that each bracket vanishes. The next step shows 
that hAB ≡ 0 which also implies cAcA + dAdA = 0. Contracting now hAB ≡ 0 with cA and dA 
we find the following: either all cA and all cA, or all dB and all dB vanish, which yields the 
first alternative of the lemma. On the other hand, in the generic case we have non-vanishing 
constants e, f  such that cA = e.cA and dA = f .dA, and inserting this into hAB ≡ 0 gives f   =  −e. 
Finally, inserting this into 0 = cAcA + dAdA = e(cAcA − dAdA) yields ‖Ω‖ = ‖Σ‖. This gives 
the stated result.� □ 

We note an obvious corollary to the above lemmas.

Corollary 1.  Suppose the Killing vectors Π and Υ are orthogonal and commute. Then only 
the second alternative of lemma 3 applies.

Remark. The preceding discussion suggests the following definition. Let Ω and Σ be self- and 
antiself- dual KVs on S3, respectively. We define the ‘toroidal pair’ of Killing vectors Γ and 
Ξ via

R Beig et alClass. Quantum Grav. 36 (2019) 215017



8

Γ =

(
Ω

‖Ω‖
+

Σ

‖Σ‖

)
, Ξ =

(
Ω

‖Ω‖
− Σ

‖Σ‖

)
.� (35)

The terminology originates in the fact that in toroidal coordinates (10), the tangents 
ΓA = ∂/∂γ  and ΞA = ∂/∂ξ) to the torus τ = const indeed form a toroidal pair. In general, Γ 
and Ξ are orthogonal, curls of each other, commute, and each one is hypersurface orthogonal 
as it satisfies 〈Γ, curlΓ〉 = 0 = 〈Ξ, curlΞ〉. Furthermore, Γ and Ξ have zeros (‘axes’) aligned 
along mutually linked great circles of S3. In contrast, the Ω’s and Σ’s are neither hypersurface 
orthogonal nor do they have an axis, since they do not even have zeros.

Clearly, every KV Π enjoys a ‘toroidal decomposition’ via

Π = Ω+ Σ = p
(

Ω

‖Ω‖
+

Σ

‖Σ‖

)
+ q

(
Ω

‖Ω‖
− Σ

‖Σ‖

)
= pΓ + qΞ� (36)

in terms of its self- and antiself- dual parts Ω and Σ, and with numbers p  and q given by

2p = ‖Ω‖+ ‖Σ‖, 2q = ‖Ω‖ − ‖Σ‖.� (37)

Note, however, that there is some asymmetry in the decomposition (36) since the first term 
is always present (as p   >  0) , while the second term is absent if ‖Ω‖ = ‖Σ‖. Precisely such a 
special toroidal pair occurs as point 2 of lemma 3.

3. The Beig–Krammer tensor

Throughout the section, Π, Υ are KVs on S3, with self- and antiself-dual parts denoted by

Π = ΩΠ +ΣΠ, Υ = ΩΥ +ΣΥ,� (38)

and {ΩA, ΣB} are the bases in the respective subspaces as introduced in (26) and (27).
The task is now to discuss the symmetries of the Beig–Krammer-tensor defined in the 

Introduction (6). We formulate its key property as follows.

Proposition 1.  On any space of constant curvature, i.e. 3Rij = Rgij, the following tensor 
is TT:

L(Π,Υ)
ij = Π(iΥj) + (curlΠ)(i(curlΥ)j) −

1
3

gij
(
ΠkΥk + (curlΠ)k(curlΥ)k

)
.

� (39)
Proof.  This is a special case of the theorem in [2]; alternatively the result can be obtained 
by direct calculation.� □ 

The following lemma the proof of which is obvious from lemma 1 is key for our discussion 
of this tensor.

Lemma 4.  In terms of the decomposition (38) the tensor (39) reads

L(Π,Υ)
ij = L(Ω)

ij + L(Σ)
ij = 2ΩΠ

(i Ω
Υ
j) −

2
3
〈ΩΠ,ΩΥ〉gij + 2ΣΠ

(i Σ
Υ
j) −

2
3
〈ΣΠ,ΣΥ〉gij,

� (40)

which reduces to

L(Π,Υ)
ij = 2uΩi Ωj −

2u
3
‖Ω‖2gij + 2vΣi Σj −

2v
3
‖Σ‖2gij� (41)

in the commuting case (see lemma 2).
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The point of this lemma is that the differential expression (39) in terms of (Π,Υ) is replaced 
by the purely algebraic ones (40) and (41). We note that in these expressions there is no mixing 
between the sd and asd components. This leads to our key classification relating properties of 

the KVs Π and Υ to the symmetries of L(Π,Υ)
ij .

Theorem 1.  Let Π and Υ be two Killing vectors on S3 (possibly parallel). Then in terms of 
the decomposition (38) and the basis (26) and (27) we find

	 I.	�The Λ−Taub-NUT case. If Υ is self-dual, (i.e. ΣΥ = 0), and if ΩΠ = uΩΥ for some 

constant u ∈ R, then L(Π, Υ)
ij  is invariant under the SO(3)× U(1) action generated by 

{ΣA, ΩΠ}.

	 II.	�The homogeneous case. If Υ is self-dual, (i.e. ΣΥ = 0), then L(Π, Υ)
ij  is invariant under 

the SO(3) action generated by {ΣA}.

	III.	�The U(1)× U(1) case. If Π and Υ commute, L(Π, Υ)
ij  is U(1)× U(1) invariant. From lem-

mas 2 and 4, the invariance is generated by {Ω,Σ} unless one of these latter vectors van-
ishes, in which case the invariance group enlarges to (SO(3)× U(1)) ⊃ (U(1)× U(1)) 
and yields Λ−Taub-NUT data (see I).

	IV.	�The unitary case. If ΩΠ = cΩΥ for some constant c ∈ R, then L(Π, Ω)
ij  is invariant under 

the U(1) action generated by ΩΠ.

Proof.  The main statements (If..., then...) of cases I, II and IV are immediate consequences 
of lemmas 1, 4, and the commutation relations (27). In addition, the proof that case I indeed 
produces Λ− Taub-NUT data is postponed to the Appendix. As to case III, it is obvious that 

L(Π, Υ)
ij  in the original form (39) is U(1)× U(1) invariant under the action of its commuting 

generators Π and Υ, and hence under any linear combination thereof, unless these vectors are 
parallel. In this special case the full invariance still holds and follows from lemmas 2 and 4 as 
stated in III above.� □ 

Remarks.

	 1.	�We have omitted obvious counterparts to the above statements which result from applying 
the (anti-)symmetry between sd and asd items.

	 2.	�If Π and Υ are orthogonal, then the data are either homogeneous (case II) or U(1)× U(1) 
symmetric (case III), which follows immediately from the two cases of lemma 3.

	 3.	�Concerning the U(1)× U(1) symmetric data, there are the following interesting special 
cases (in the notation of lemma 2):

	Λ-Taub-NUT:  Applies if one of the following holds: Σ ≡ 0, Ω ≡ 0, u  =  0, v = 0, or 
u = v = 0.

	the ‘parallel’ case: � u v = 1 (but neither Σ ≡ 0 nor Ω ≡ 0).
	the ‘orthogonal’ case:   u v = −1 and u‖Ω‖ = ‖Σ‖ (see point 2 of lemma 3).On these 

data we will focus our discussion of the Lichnerowicz equation in section 4 below, 
and determine the marginally trapped surfaces in the data in section 5.
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	 4.	�From the previous remark it is clear that case I is a special case of any other one, while III 
is a special case of IV.

	 5.	�Some converse of the above theorem holds as well, i.e. invariances of L(Π, Υ)
ij  imply state-

ments on Π and Υ. The proof is non-trivial in case III only; we refrain from giving details.
	 6.	�Clearly, the list in the above theorem is not exhaustive, i.e. there is a generic case (no 

continuous symmetries) as well.

4. The Lichnerowicz equation

4.1.  Existence, stability and symmetry

We recall here key results [24] on solving the Lichnerowicz equation  (2) and on proving 
properties of its solutions. Since both our seed manifold as well as the momentum term V2 
enjoy symmetries, it will in particular be important to examine the conditions under which the 
solutions inherit or break these symmetries. We recall from [4] some definitions and results on 
this issue. We then compare their application to the S3 and S2 × S1 cases [4], respectively. We 
recall from the Introduction that a ‘solution’ is always understood to be smooth and positive.

Definition 4.  The linearized Lichnerowicz operator Lφ and eigenvalue λ:

Lφζ :=

(
−∆+

R
8
− 5Λ̂

4
φ4 +

7V2

8φ8

)
ζ = λζ.� (42)

Definition 5.  Stability of solutions and initial data sets.

	 1.	�A solution φ of (2) is strictly stable/stable/marginally stable/unstable/strictly unstable iff 
the lowest eigenvalue λ is positive/nonnegative/zero/nonpositive/negative respectively.

	 2.	�An initial data set (M̃, g̃ij, K̃ij) is stable iff the solution φ ≡ 1 is stable, and analogously 
for the other stability properties.

We remark that stability of a data set implies that in fact every solution (generating that 
data from an an arbitrary seed) is stable (see lemma 1 of [4]). Again this extends to all stability 
properties.

Proposition 2.  Uniqueness of stable solutions for convex potentials, see [10]. If stable 
solutions of (2) exist, they are unique.

To see this, note that the potential term in equation (2) is strictly convex in the sense of 
proposition 1.3.1. of [10]. Thus, the latter result just requires adaptation from the autonomous 
case to the present non-autonomous one, and from Dirichlet boundary conditions to the pre-
sent compact case. Both generalisations are trivial.

The Yamabe theorem (see [18, 26]). Let (M, gij) be compact and of positive Yamabe 
type. Then (2) with V ≡ 0 has at least one solution φ.

Premoselli’s theorem [24]. Let (M, gij) be compact and of positive Yamabe type. Writing 
V = b.V  for a positive constant b and a function V �≡ 0, the following holds:
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There exists b� ∈ (0,∞) such that equation (2) has, for

	b < b� :	� more than one solution precisely one of which, φs, is strictly stable; 
	b = b� :	� a unique marginally stable solution; 
	b > b� :	� no solution.

Moreover, the unique stable solution b → φs(b) for b ∈ (0, b�] satisfies

	 1.	�limb→0 φs(b) = 0; 
	 2.	�the map b → φs(b) is continuous and increasing in the sense that φs(b) < φs(b′) for 

b < b′, everywhere on M; 
	 3.	�every φs(b) is minimal in the sense that φs(b) < φ everywhere, for any other solution φ.

This formulation combines theorem 1.1, proposition 3.1 (positivity), proposition 6.1 (stability 
and minimality) and lemma 7.1 (continuity) of [24]. Note that theorem 1.1 applies to a more 
general setting in which uniqueness of stable solutions need not hold; in the present case it 
does follow from proposition 2 above.

We turn now to the symmetry properties of solutions.

Definition 6 (Symmetric Lichnerowicz equation).  We call equation (2) symmetric iff 
(M, gij) and V2 are invariant under some (discrete or continuous) isometry.

Clearly this definition is a priori less restrictive than the invariance of (M, gij) and Kij used 
in the remaining part of this paper.

Definition 7 (Symmetry inheritance/breaking).  A solution φ of a symmetric Lich-
nerowicz equation (2) inherits a continuous symmetry Π iff the corresponding Lie derivative 
satisfies LΠφ ≡ 0 while otherwise it breaks the symmetry. An analogous definition applies to 
discrete symmetries.

Proposition 3 (Symmetry inheritance/breaking; see proposition 2 and corollary 
1 of [4]).  The stable solutions φs of (2) inherit continuous and discrete symmetries.

Premoselli’s theorem also implies that the solutions form branches parametrized by b. Of 
particular interest are results which characterize the behaviour of these branches near their end 
points b  =  0 and b = b�. The minimal stable branch indeed enjoys such a ‘universal’ behav-
iour on either end; the precise results are as follows

Lemma 5 (Modified part of proposition 4 of [4]).  There is an ε > 0 such that for all 
b ∈ (b� − ε, b�) there is precisely one stable and one unstable solution.

Lemma 6 (Modified proposition 3 of [4]).  For the minimal, stable solutions 
limb→0 b−1/4φs is finite.

On the other hand, the number and the properties of the unstable branches largely depend on the 
seed and on V2, which is revealed in particular by the examples discussed shortly. Nevertheless, 
some general information can be obtained via the implicit function theorem, bifurcation theory, 
and general results on elliptic PDEs. We recall in particular that a necessary condition for a bifur-
cation to occur at some b is that the linearized operator L defined as (42) has a zero eigenvalue.

In the next section 4.2 we discuss the S3 case which we compare in section 4.3 with the 
round unit donut S2 × S (see (4)) elaborated in [4]. Noting that R  =  6 in the former and R  =  2 
in the latter case, it proves useful to remove Λ̂ from (2) via the rescaling

ψ = (
2Λ̂
R

)1/4 φ, W = 2
Λ̂V
R

� (43)
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which yields
(
∆− R

8

)
ψ +

R
8
ψ5 +

W2

8ψ7 = 0� (44)

for any R = const > 0. Note that ψ ≡ 1 now solves (44) for W ≡ 0. In terms of these vari-
ables, the linearization (42) reads

Lψρ :=
(
−∆+

R
8
− 5R

8
ψ4 +

7W2

8ψ8

)
ρ = λρ.� (45)

4.2.  S3

In this case equation (44) becomes

∆ψ − 3
4
(
ψ − ψ5)+ W2

8ψ7 = 0.� (46)

When we use the coordinate system (11) with the substitution x = cos(2τ), x ∈ (−1, 1), we 
obtain

ds2 =
dx2

4(1 − x2)
+

1 + x
2

dγ2 +
1 − x

2
dξ2� (47)

which we will use occasionally in what follows.
We discuss in turn the Yamabe case W ≡ 0, the case that W is constant, and the generic 

U(1)× U(1)-symmetric one.

	(a)	� W ≡ 0: This case is well-known, see e.g. [18] for a review. We recall the Yamabe theorem 
and its proof which provides the most instructive example of symmetry-breaking and is 
required for the analysis of the generic case. It is based on the existence of nontrivial 
conformal isometries of the standard three-sphere.

		  By means of preparation let us start with the following observations: there is a four-
parameter family of solutions of the equation

∇i∇jσ + gijσ = 0.� (48)

		  Namely, these can be taken to be constant linear combinations of the Euclidean coordi-
nates (z1, z2, z3, z4) (see (9)), restricted to S3. As a corollary they satisfy

(∆ + 3)σ = 0,� (49)

		  whence are the n  =  1 spherical harmonics on S3. Next observe that by virtue of (48) the 
vector fields σi = ∇iσ  are conformal Killing vectors. They form a 4-dimensional linear 
space, but not a Lie algebra. Note that the quantity (∇σ)2 + σ2 is constant; we find it 
convenient to rescale σ such that

(∇σ)2 + σ2 = 1.� (50)
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		  Each of the functions (z1, z2, z3, z4) has this property. Note finally that each solution of 
(48,50) can be characterized as follows: pick a (’reference’ or ’north pole’) point P on S3 
and require σ|P = −1, whence P is a critical point due to (50). The function σ will then 
monotonically increase along the flow of ∇iσ while being constant on two-spheres. It 
goes to zero on the equatorial sphere and then to  +1 on the point antipodal to P, which is 
also a critical point.

Proposition 4 (The Yamabe theorem on S3).  The solutions of (46) with W ≡ 0 form a 
four-parameter family given by

ψa =

√
2 a

(1 + σ)a2 + 1 − σ
� (51)

where a ∈ R+.

Proof.  Checking that ψa solves (46) with W  =  0 is a straightforward exercise based on (48) 
and (49). As the reference point (north pole) can be chosen arbitrarily on S3, the full family of 
solutions is in fact four-parametric. For uniqueness recall a theorem by Obata (see [18, 22]), 
which states that all rescalings of the standard metric having the same constant curvature 
come, apart from a constant rescaling, from conformal isometries of (S3, gij). We state without 
proof that the functions ψa, up to a constant rescaling by a1/2, do come from the conformal 
flow Ψt generated by ∇iσ with a  =  et.� □ 

Suppose we choose the north pole for σ on the limiting great circle x  =  −1 on which the 
toroidal foliation given by x = const is based. Then

σ = cos τ cos ξ,� (52)

and we observe the following: while the Yamabe equation (46) with W ≡ 0 is invariant under 
the six-parameter family of isometries of S3, its solutions (51) are of the form ψ(r) = ψ(τ , ξ) 
- hence in particular the invariance under the KV Ξ = ∂/∂ξ  is broken.

In view of proposition 2, this symmetry breaking signals an instability under conformal 
rescalings. In the present context, in particular for R  =  6, W  =  0 and ψ = 1, equation (45) 
becomes

−∆ρ = (3 + λ)ρ.� (53)

As is well known, the spectrum of −∆ on S3 is n(n + 2), where n ∈ N0. Thus, the lowest 
eigenvalue is λ = −3. In terms of the coordinates (47), the higher eigenmodes either depend 
on x only, or they result from excitation of the γ  and ξ- modes on a fixed torus x = const. 
Explicitly, with the separation ansatz ρ(x, γ, ξ) = exp(ikγ + imξ)χ(x), where i =

√
−1  and 

k, m ∈ Z, equation (53) takes the form
(
−4

d
dx

(1 − x2)
d
dx

+
2k2

1 − x
+

2m2

1 + x

)
χ = (3 + λ)χ.� (54)

In particular, the second eigenvalue λ = 0 has multiplicity four with the associated 
eigenfunctions

χ1 =
√

1 − x cos ξ, χ2 =
√

1 − x sin ξ, χ3 =
√

1 + x cos γ, χ4 =
√

1 + x sin γ.� (55)

Of course, these eigenfunctions correspond to the four directions of the general four-param
eter solution of the Yamabe problem described above.
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	(b)	� W = const �= 0.  In terms of the classification theorem for L(Π,Υ)
ij  of section 3, this case 

arises precisely for the homogeneous case II in theorem 1, as follows from (40) and 

〈Ω,Σ〉 �= 0. (Recall, however, that this homogeneous case overlaps with the other cases 
of the theorem).

		  In this case, equation (46) has obviously constant solutions determined by the positive 
roots of the polynomial

ψ12 − ψ8 +
1
6

W2 = 0.� (56)

		  These solutions come in pairs for all 0 < W2 < W2
max = 8/9, in accordance with 

Premoselli’s theorem quoted in the previous subsection. There now arises the question 
of uniqueness of these solutions, particularly in view of the symmetry breaking exposed 
above for the case W ≡ 0. However, it turns out that this ambiguity disappears as soon as 
W is turned on, due to the following result.

Theorem (Corollary 1 of theorem 1 of Brezis and Li [6]) On S3, the Lichnerowicz 
equation (46) with W = const has only constant solutions.

	(c)	� W = W(x).  We finally turn to the case of U(1)× U(1) symmetric data. From (41) we 
obtain, in terms of the notation of lemma 2,

W2
(Π,Υ) =

1
9
Λ̂2V2

(Π,Υ) =
8Λ̂2

27
[(

u2‖Ω‖4 − u v ‖Ω‖2 ‖Σ‖2 + v2 ‖Σ‖4)+ 3 u v 〈Ω, Σ〉2 ] .�

(57)
		  We now choose Ω and Σ as follows

Ω =

√
3

Λ̂
Ω3 and Σ = u

√
3

Λ̂
Σ3,� (58)

		  where Ω3, and Σ3 are elements of a basis defined via (26) and (27). This choice is compat-
ible with (23) and no loss of generality in view of the remaining scaling ambiguity and 
the rotation freedom (28). In terms of adapted coordinates (29) and (30) with x = cos(2τ) 
this entails 〈Ω,Σ〉 = 3Λ̂−1u x, and simplifies (57) as follows

W2
(Π,Υ) =

8
3

u2 (1 − u v + u2 v2)+ 8 u3 v x2.� (59)

		  As to solving the Lichnerowicz equation (46) we conjecture that, as for W = const �= 0 
and in accordance with Premoselli’s theorem quoted above, there is exactly one pair of 
solutions for 0 < b < b�. Below we split this conjecture into an ODE and a PDE part, and 

formulate it for arbitrary W2(x) = b2W
2
(x) rather than for the special form (59). We call 

a solution even if ψ(x) = ψ(−x).
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Conjecture 1.  The Lichnerowicz-ODE, which results from (46) by assuming that 
ψ = ψ(x), viz.

4(1 − x2)
d2ψ

dx2 − 8x
dψ
dx

− 3
4
(ψ − ψ5) +

b2W
2
(x)

8ψ7 = 0� (60)

has for every 0 < b � b� a unique stable, even solution and a unique unstable, even solution 
which coincide at b = b�. For b → 0 the solutions on the stable branch tend to zero like b1/4, 
while the unstable ones converge to ψ ≡ 1.

Partial proof and numerical evidence. For the stable branch, the result follows from 
Premoselli’s theorem and proposition 2 and lemma 6 above. For the unstable branch an adap-
tion of Premoselli’s theorem (in terms of suitably restricted function spaces) might still apply. 
Alternatively, the implicit function applied to the linearized ODE operator (the ODE restric-
tion of (45)) would guarantee existence and uniqueness directly as long as this operator had a 
trivial kernel. This is easily verified for b  =  0 because the linearized Yamabe operator around 
ψ = 1, given by L = −∆− 3, has a trivial kernel when restricted to functions depending 
only on x, hence it holds for small b. It also holds for b near b� by virtue of lemma 5. In the 
intermediate range we rely on numerical observations.				     �

As to the full Lichnerowicz equation (46) with b  >  0, we now discuss non-existence of 
symmetry breaking bifurcations, first from the Yamabe solutions and then from the unstable 
ODE branch.

Proposition 5.  Equation (46) has no symmetry breaking solutions bifurcating at b  =  0 
from the zero eigenvalue of the four-parameter family of the Yamabe solutions.

Proof.  We already know that for W = W(x) and small b there exists an ODE solution of 
equation (46) of the form ψ = ψ(x) = 1 + b2ψ1(x) +O(b4). To see if there are other solu-
tions bifurcating from ψ = 1 at b  =  0, we seek them in the form

ψ = 1 + bv + z,� (61)

where v ∈ N  (kernel of L) and z ∈ N⊥ is of the order O(b2). We recall that 
N = span{χ1,χ2,χ3,χ4}, where χk are given in (55). Substituting the expansion 
z = b2z2 + b3z3 + ... into (46), at the order O(b2) we get

Lz2 =
15
2

v2 +
1
8

W
2
.� (62)

Since v2 is orthogonal to N, by the Fredholm alternative the solution z2 exists iff

(W
2
,χk) = 0, k = 0, ..., 4,� (63)

where (, ) denotes the L2-inner product on S3. Assuming that the orthogonality conditions (63) 
hold, at the order O(b3) we get

Lz3 = 15vz2 +
15
2

v3 − 7
8

vW
2
.� (64)

Let v =
4∑

k=1
ckχk . By the Fredholm alternative, the coefficients ck are constrained by the or-

thogonality conditions
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(15vz2 +
15
2

v3 − 7
8

vW
2
,χk) = 0.� (65)

In general, this will give a system of four cubic polynomial equations  for the coefficients 
ck, however in our case the cubic terms vanish identically and we are left with the trivial 
linear equations ck  =  0 (the vanishing of the cubic terms is a consequence of existence of 
the 4-parameter family of solutions for b  =  0; more precisely, for W  =  0 the v and particular 
solutions z2, z3, ... correspond to the Taylor series expansion of this 4-parameter family). This 
excludes symmetry-breaking solutions that bifurcate from ψ = 1 at b  =  0, thereby proving 
the uniqueness of the x-dependent continuation (unstable branch) in b of the trivial solution 
ψ = 1.

Thanks to the conformal symmetry for b  =  0, an analogous argument proves the absence 
of bifurcations from the whole four-parameter family of Yamabe solutions.� □ 

Conjecture 2.  Equation (46) has no symmetry breaking solutions bifurcating from the 
unstable ODE branch for b  >  0.

Partial proof and numerical evidence. We were not able exclude bifurcation and corre
sponding symmetry breaking by general theorems such as those of Brezis and Li [6] used 
for W = const, or by the results of Jin et al [16] employed in [9]. We rather have to resort to 
numerical evidence. In particular we will consider now the eigenvalue problem for the lin-
earized operator on the unstable branch

(
−4

d
dx

(1 − x2)
d
dx

+
3
4
(1 − 5ψ4) +

7W2(x)
8ψ8 +

2k2

1 − x
+

2m2

1 + x

)
χ = λχ

� (66)
for special choices of W(x).

We focus on the three cases listed in remark 3 after theorem 1, namely Λ-Taub NUT (where 
we set v = 0), and the parallel (u v = 1) and the orthogonal (u v = −1) cases. Note that (58) 
is consistent with this Remark.

For the respective momentum densities W��, W‖ and W⊥ we obtain from (57)

W2
�� =

8
3

u2, W2
‖ = 8u2(

1
3
+ x2), W2

⊥ = 8u2(1 − x2).� (67)

We can now consider b  =  u as scaling parameter in Premoselli’s theorem, which then in par
ticular implies existence of solutions up to a maximal value u�. Recall from the previous 
subsection b) that in the Λ-Taub NUT case where W�� = const we have only constant solu-
tions (see the upper diagrams in figure 1). As to the other cases, numerics and perturbative 
calculations show that along the unstable branches the lowest eigenvalues grow monotonically 
from  −3 at u  =  0 to 0 at u* while all higher eigenvalues remain positive. This absence of zero 
modes supports the above conjectures. The ODE branches are plotted in figure 1.�  �

We finally remark that an elementary perturbative calculation gives the following approx
imations for the unstable solutions for small values of u

ψ‖(x) = 1 − 5 − x2

21
u2 +O(u4), ψ⊥(x) = 1 − 3x2 + 13

63
u2 +O(u4).

� (68)
The corresponding eigenvalues (66) can be obtained perturbatively as well.
Remark. It is known from point 2. in Premoselli’s theorem quoted above in section 4.1 that 
solutions on the stable branch are pointwise strictly monotonically increasing with u. We 
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observe numerically that the solutions on the unstable branch are pointwise strictly monotoni-
cally decreasing with u (for small u this follows from the perturbative solutions, see (68)). If 
proven, this would imply that the potential term in (66) is strictly monotonically increasing 
with u and consequently the same holds for the eigenvalues. This would prove that all the 
eigenvalues but the lowest one are positive, thereby excluding symmetry breaking bifurcations.

ψ4 ψ4

ψ4(±1) ψ4

ψ4
⊥(±1) ψ4

⊥

Figure 1.  The diagrams on the left show the stable (green) and unstable (red) branches 
of solutions of the Lichnerowicz-ODE equation (60), for the choices W = W�� = const, 
W(x) = W‖(x) and W(x) = W⊥(x) given by (67); in the latter two cases, there are plotted 
the values of ψ4 at the polar circles x = ±1 against u. For a sample value u  =  0.4 
(indicated by dots) the diagrams on the right show the respective functions ψ4(x).
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4.3.  S2 × S1

It is instructive to compare the data constructed above with similar ones of topology 
S2 × S1. In this case the seed manifold is the donut (4) whose symmetry group is obviously 
SO(2)× U(1). We consider here equation (44) for R  =  2 and distinguish, in analogy with the 
S3 case, momenta with W ≡ 0, W = const and axially symmetric ones, i.e. W = W(θ).

	 (a)	W ≡ 0: As we sketched in the introduction, the Yamabe- case is already non-trivial for 
such data since ‘symmetry breaking generates black holes’—in particular, the family of 
time-symmetric Kottler data (k solutions if B ∈ (2πk, 2π(k + 1)]) arises via breaking the 
U(1) symmetry of the donut. We refer to [25] for details.

	(b)	W = const �= 0. In this case, the constant solutions are determined by the positive roots 
of the polynomial

ψ12 − ψ8 +
1
2

W2 = 0,� (69)

		 which exist up to a maximum value W2
max = 8/27. However, in contrast to the S3 case, 

there are also symmetry-breaking solutions; we refer to Chruściel and Gicquaud [9]. On 
the other hand, these authors show that φ = φ(ξ), i.e. the solutions are necessarily still 
S2-spherically symmetric.

	 (c)	W = W(θ). In [4] we considered a three-parameter family of ‘Bowen-York’ data which 
endows all S2 sections with an angular momentum of arbitrary magnitude and direction. 
We recall that the ten-parameter family of Bowen-York-data [5] was originally defined 
on flat space, but the definition carries over straightforwardly to the present locally con-
formally flat setting. Analyzing then the Lichnerowicz equation via Premoselli’s theorem 
and numerically reveals a rich structure of rotating data, which exist up to a limiting 
angular momentum J�. Among them are both U(1)-symmetry-preserving as well as 
-breaking ones, corresponding to their stability properties [19]. Although the data with 
broken symmetry very likely contain ‘black holes’ in the sense of marginally trapped 
surfaces (as it is the case without rotation), this is unproven.

		 We show how the momenta considered in [4] are related to the scheme of section 3. above. 
To reinterpret this family of data in the present context, we consider, in the coordinates 
(4), the orthogonal, commuting Killing vectors

Ξ =
∂

∂ξ
, Φ =

∂

∂ϕ
.

� (70)
		 We note that, in contrast to S3, the present S2 × S space is not of constant curvature, 

whence the construction of TT tensors described in Sect 3 does not apply. Nevertheless, 
we recall from equation (5) of the Introduction that the symmetrized tensor product of Φ 
and Ξ, viz.

Lij = 6J Ξ(i Φj) where J =
1

8π

∫

S
LijΦ

idS j� (71)

		 is a TT tensor on any background. The (‘Komar’-) angular momentum J is conformally 
invariant and the same for all compact two-surfaces S  within a given homology class; 
here in particular for any spherical surface. As ingredient for the Lichnerowicz equa-
tion we find

W2 = Λ̂2V2 = Λ̂2KijKij = 18Λ̂2J2 sin2 θ� (72)
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		 which agrees with [4] except for the different Λ- scaling (which is already present in the 
respective seed manifolds) and that [4] is restricted to the maximal case K̃ = 0. We refer 
to that paper and to [19] for the discussion of the solutions.

5.  Marginally trapped surfaces

We finally locate and discuss toroidal (marginally, outer) trapped surfaces (MTSs, MOTSs) 
as well as marginally trapped regions (MTRs) in our data. Before doing so in section 5.3, we 
recall in section 5.1 key definitions, a result on ‘(non)-visibility’ of MTRs due to Chruściel 
et al [8] (reproduced below as theorem 2) which motivates our discussion, and in section 5.2 
the situation in de Sitter spacetime and its perturbations. We adopt the notation of [8] except 
that our tilded quantities refer to the physical spacetime, while compactifications are untilded. 
In particular, the spacetime is denoted by (Ñ , γ̃µν) (µ, ν = 0, 1, 2, 3) and its compactification 
by (N , γµν).

5.1.  Definitions, results, motivation

Definition 8. 

	 •	�A marginally trapped surface (MTS) is a compact 2-surface for which least one of 
the families of orthogonally emanating, future directed null geodesics with tangents 
l̃+ and l̃− has vanishing expansion (Θ̃+ = 0 or Θ̃− = 0).

	 •	�A compact, connected spacelike hypersurface is called a marginally trapped region 
(MTR) if its (only) boundary is a MTS with respect to the outward normal l̃+. In this 
case the bounding MTS is called a marginally outer trapped surface (MOTS).

Remarks.

	 1.	�The above definition of a MOTS is in line with [8] (which contains the more general 
definition of a weakly trapped region). However, it differs in general from others (e.g. 
definition 2.1. of [1]) as to the ‘outer’ assignment.

	 2.	�A MOTS (and hence the boundary of a MTR) need not be connected.
	 3.	�A MOTS itself is never a marginally trapped region as the ‘outer’ direction is ill-defined.
	 4.	�A MTR need not contain any outer trapped surfaces defined by Θ̃± < 0.

The original motivation for studying such surfaces and regions comes from the singularity 
theorems. We recall in particular Hawking’s classical theorem (theorem 4, section 8.2 of [13]) 
which asserts past geodesic incompleteness in spatially closed spacetimes that are at some 
stage future expanding and satisfy the strong energy condition. However, as the latter con-
dition is violated in our Λ- vacuum case (while the dominant energy condition still holds 
for positive Λ), the conclusion need not hold; in fact de Sitter space which is geodesically 
complete is an example. Nevertheless, as we shall see shortly, de Sitter space itself is awash 
with MTSs and MTRs. We also recall that Friedrich’s stability results for de Sitter space [12] 
indicate that, under ‘weak’ energy conditions, a cosmological singularity theorem can only 
hold under substantial modifications of the other requirements.

On the other hand, Chruściel et al [8] recently obtained results concerning the ‘visibility’ 
(from infinity) of MTSs and MTRs. The key differences to the singularity theorems are that 
only the null energy condition is required, and some asymptotics compatible with de Sitter is 
assumed. In precise terms, the result which concerns us here reads as follows.
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Theorem 2 ((In)visibility of trapped regions from J ; slightly adapted theorem 
2.5 of [8]).  Consider a future asymptotically de Sitter spacetime (Ñ , γ̃µν) which is future 
causally simple and satisfies the null energy condition. Then either the causal future of some 
set Ã ⊂ N  contains all of infinity, i.e. J+(Ã,N ) ⊃ J +, or else there are no marginally 
trapped regions in J+(Ã,N ) ∩ I−(J +,N ).

Turning to calculations, we recall the decomposition of the expansion on any two-surface 
Ũ  with mean curvature H̃ , outer normal ñi, and induced metric q̃ij = g̃ij − ñiñj in terms of 
the data, viz.

Θ̃± = ±H̃ + Q̃ = ±∇̃i ñi + q̃ijK̃ij = ± 1√
g̃
∂i

(√
g̃ ñi

)
+ q̃ijK̃ij on Ũ .

� (73)
We now restrict ourselves to MOTSs of toroidal topology. Such MOTSs have been found 

and studied before, in particular in asymptotically flat Λ = 0-vacuum data [14] as well as in 
closed Friedmann–Lemaître–Robertson–Walker spacetimes [11, 20]. We remark that topol-
ogy results (see lemma 9.2 of [1], or [21]) imply that MOTSs which are stable with respect 
to their outward normals within their defining MTRs, (as defined e.g. in definition 5.1. and 
proposition 5.1. of [1]) must be spherical. Therefore, toroidal MOTSs must be strictly unsta-
ble in the sense that the lowest eigenvalue of the stability operator (see definition 3.1 of [1]) 
must be negative; this will be used in the discussion of conjecture 3 in the next subsection.

5.2. Toroidal MOTSs and MTRs in de Sitter spacetime

We next determine toroidal MOTSs on ‘standard’ CMC slices of de Sitter space, by which we 
mean σ = const, slices of (A.3). The induced metric and extrinsic curvature of such a slice 
read

g̃ij =
3

Λcos2 σ
dS2

ij, K̃ij =

√
3
Λ

sinσ

cos2 σ
dS2

ij,� (74)

where dS2
ij is the standard metric on the unit three-sphere. Hence the mean curvature is 

K̃ = K̃ijg̃ij =
√

3Λ sinσ.
Restricting ourselves now to toroidal surfaces of the form τ = τ0 = const in the coordi-

nates (11), we obtain

Θ̃±
∣∣∣
τ0

=
(
±H̃ + q̃ijK̃ij

)∣∣∣
τ0

=

√
Λ

3

[
± cosσ

sin(2τ)
∂

∂τ
(sin(2τ)) + 2 sinσ

]

τ0

= 2

√
Λ

3
(± cosσ cot(2τ0) + sinσ) .

�

(75)

This implies that

Θ̃± = 0 iff τ = τ±0 = ±σ/2 + π/4;� (76)

in particular MOTSs exist for all times, i.e. for all σ ∈ (−π/2,π/2). The corresponding MTRs 
are given by τ ∈ [0, τ+0 ] and τ ∈ [τ−0 ,π/2], respectively; curiously, neither region contains 
toroidal outer trapped surfaces.
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As to applying theorem 2 in this setup it should be kept in mind that the set Ã  can in par
ticular be chosen to be a MTS, but alternatively to be a MTR, while the conclusion refers to 
MTRs in either case.

We first recall from [8] the example of the time-symmetric case σ0 = 0. We take Ã  
to be the Clifford torus at τ = π/4 which satisfies Θ̃± = 0. We find that J+(Ã,N ) con-
tains J + given by σ = π/2 in the compactification N ; in fact it contains all slices 
σ ∈ [π/4,π/2]. These latter slices also contain MTRs, as determined after equation  (76), 
while J+(Ã,N ) ∩ (σ = const) does not contain any MTRs for σ ∈ [0,π/4). This is obvi-
ously consistent with theorem 2. A similar behaviour is found for MOTSs Ã  given by (76) 
on any slice σ0 ∈ (0,π/6]: J+(Ã,N ) contains all slices σ ∈ [3σ0/2 + π/4,π/2], and only 
for such slices J+(Ã,N ) ∩ (σ = const) contains MRTs. On the other hand, for MOTSs on 
slices σ0 ∈ (π/6,π/2), J+(Ã,N ) ∩ (σ = const) contains neither J + nor any MTRs, again 
in agreement with theorem 2.

Needless to say, one would like to have a more interesting example for this theorem. A 
natural candidate would be a perturbation of de Sitter. In fact Friedrich’s stability result, theo-
rem 3.3 of [12] together with remark 3.4, asserts that, roughly speaking, the compactification 
survives small perturbations of the data, which is a prerequisite in order for theorem 2 to apply. 
This motivates the following

Conjecture 3.  Under perturbations of de Sitter data which preserve its global stucture 
according to Friedrich’s stability result theorem 3.3. of [12], the toroidal marginally outer 
trapped surfaces and marginally outer trapped regions remain close to those of de Sitter as 
determined above.

The difficulty of proving such a statement is that, as mentioned at the end of the previous 
subsection, toroidal MOTSs must be strictly unstable in the present Λ—vacuum case. On the 
other hand, strict stability guarantees the persistence of MOTSs under small perturbation of 
the data. This follows, via an implicit function argument, from a slight adaption of theorem 
9.1 of [1]. The same could be proven, by the same method, in the present strictly unstable case 
provided the adjoint of the stability operator (definition 3.1 of [1]) had a trivial kernel. The 
latter, however, is unknown in the general setting as discussed above. Below we will revisit 
conjecture 3 in the context of the special data constructed in section 4, without giving a proof 
either.

5.3. Toroidal MOTSs and MTRs in our data

We now track toroidal MOTSs in the U(1)× U(1) -symmetric data constructed in section 4 
on S3. We restrict ourselves to the maximal case K̃ = 0. As before the tori are given by 
τ = τ0 = const in the coordinates (11), but now we include the momentum of lemma 4. For 
the last term in (73), we obtain from (41) and (43)

q̃ijL̃ij =
2

3φ6

(
u‖Ω‖2 + v‖Σ‖2) = 2

3ψ6

(
Λ

3

)3/2 (
u‖Ω‖2 + v‖Σ‖2) = 2

√
Λ

3
c
ψ6

� (77)
which defines c as a constant on S3, in particular c does not depend on the torus τ = τ0.

Hence (73) can be rewritten on Ũ  in the coordinates (11) as

Θ̃± = ± 1
φ6 sin(2τ)

∂

∂τ

(
φ4 sin(2τ)

)
+ q̃ijL̃ij = ± 1

ψ6 sin(2τ)

√
Λ

3
∂

∂τ

(
ψ4 sin(2τ)

)
+ 2

√
Λ

3
c
ψ6 ,

� (78)
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and the condition for τ = τ±0  to be a MOTS becomes
[

1
sin(2τ)

∂

∂τ

(
ψ4 sin(2τ)

)]

τ±
0

= ∓2c.� (79)

We finally restrict ourselves to the special cases singled out in remark 3 after theorem 1 
and further elaborated in the previous section, namely Λ-Taub-NUT (v = 0) and the paral-
lel (u v = 1) and orthogonal (u v = −1) cases. Furthermore we adopt the choice (58), which 
gives ‖Ω‖ =

√
3/Λ and ‖Σ‖ = u

√
3/Λ. We find from the definition (77) that the respective 

constants c take the values

c�� =
u
3

c‖ =
2u
3

c⊥ = 0.� (80)

In the following closer analysis of toroidal MOTSs in the above cases we restrict ourselves 
to the Θ̃+ = 0 ones; the case Θ̃− = 0 involves some sign changes.

		 Λ-Taub-NUT: Recall that here W�� is constant given by the first of (67) and therefore ψ�� 
is the constant determined by (56). From (79) and (80) the condition for a torus τ = τ�� to 
be a MOTS then reads

ψ4
�� = −u

3
tan(2τ��).� (81)

		 Using (56) and (67) we can eliminate either ψ�� or u to obtain

u
3
= cot(2τ��)[4 cot(2τ��)− 1], cot(2τ��) = ±

√
1 − ψ4

��

2
.� (82)

		 This calculation is interpreted as follows. Recall from (56) that, for any u with 
u2 ∈ (0, 1/3), there are precisely two values for ψ�� ∈ (0, 1) which yield a stable and an 
unstable ‘Premoselli pair’ of data. Either data have precisely one MOTS at τ�� given by 
the second equation in (82), where the sign has to be chosen such that u tan(2τ��) < 0 by 
virtue of (81). We now recover a behaviour analogous to the de Sitter case: (78) implies 
that each torus given by τ ∈ (0, τ��) is outer untrapped in the sense that Θ̃+ > 0; on the 
other hand, the region covered by these tori is called a MTR according to definition 8.

	 	The parallel case: In the previous section  we determined numerically the stable and 
the unstable branches of solutions ψ‖ of the Lichnerowicz equation  (60) with W‖ 
from (67). Solving now also the MOTS equation, namely the Θ̃+ part of (75) with the 
choice (80) numerically reveals a behavior which is qualitatively the same as in the 
previous Λ-Taub-NUT case: in particular we find precisely one MOTS τ = τ‖ on each 
branch. We remark that for the unstable branch, the small-u approximation (68) gives 
cos(2τ‖) = 2u/3 + O(u2).

	 	The orthogonal case: The numerical solutions of the Lichnerowicz equation (60) now 
involve W⊥ from (67). Since c⊥ vanishes from (80), the MOTS equation (75) becomes

4ψ−1
⊥

dψ⊥

dx

∣∣∣∣
x⊥

= cot 2τ⊥.� (83)

		 A numerical analysis now shows that the respective sides of (83) have different signs 
unless both vanish. Hence we are left with the Clifford torus at τ⊥ = π/4 as only MOTS, 
like in the time-symmetric de Sitter case described earlier.
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To conclude, we found numerically toroidal MOTSs in all U(1)× U(1)-symmetric, maximal 
Λ -Taub-NUT, ‘parallel’ and ‘orthogonal’ data. While in the first two cases there is a unique 
Θ̃+ = 0 and Θ̃− = 0- pair of different MOTSs, these MOTSs coincide at the Clifford torus in 
the latter case. Being boundaries of MTRs, all these MOTSs qualify in principle as tests for 
the (non-)visibility theorem of [8] quoted above as theorem 2. Clearly, the constructed data are 
in general unlikely to satisfy the ‘cosmic-no-hair’-type requirement of this theorem, namely 
an evolution towards a causally simple asymptotically de Sitter spacetime (Ñ , γ̃µν). We rather 
return now to the perturbative setting of conjecture 3. For our special families of data this 
means that we need to restrict ourselves both to small u as well as to the unstable solutions of 
the Lichnerowicz equation, (in the sense of definition 5 above), since the stable ones go to zero 
for u → 0. Clearly, Λ− Taub NUT can for small NUT parameter be interpreted as a perturba-
tion of de Sitter, see [3]. On the other hand, understanding the structure of toroidal MOTSs and 
MTRs in the other cases could be achieved by generalizing the calculations of this subsection 
from the maximal to the CMC-case. We leave this to future work.
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Appendix

Λ-Taub-NUT data

The Λ-Taub-NUT metric can be written as (see e.g. [3, 23])

γ̃µν =
3D
Λ

[
− 1

f (t)
t,µt,ν + f (t)Ω1

µΩ
1
ν + (1 + t2)(Ω2

µΩ
2
ν +Ω3

µΩ
3
ν)

]
,� (A.1)

where the one-forms ΩA
µ are related to the vectors (29) via ΩA

µdxµ = gij Ω
A jdxi, and

f (t) =
Dt4 + 2(3D − 2)t2 + Ct + 4 − 3D

1 − t2
� (A.2)

with constants C and D  >  0 so that f   >  0. We remark that the relation to the one-forms ωA
i  of 

[23] is 2ΩA
µdxµ = ωA

i dxi where the coordinates are related via τ = θ/2, γ = (ψ − φ)/2 and 
ξ = (ψ + φ)/2.
Note also that de Sitter spacetime is obtained for C = 0, D = 1 in the form

γ̃µν =
3

Λcos2 σ

(
−σ,µσ,ν +Ω1

µΩ
1
ν +Ω2

µΩ
2
ν +Ω3

µΩ
3
ν

)
,� (A.3)

where t = tanσ.
The intrinsic metric of t  =  t0 is given by

g̃ij(t0) =
3D
Λ

[ f (t0)Ω1
i Ω

1
j + (1 + t2

0)(Ω
2
i Ω

2
j +Ω3

i Ω
3
j )]� (A.4)
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and the extrinsic curvature by

K̃ij(t0) =

√
3Df (t0)

Λ

[
1
2

f ′(t0)Ω1
i Ω

1
j + t0(Ω2

i Ω
2
j +Ω3

i Ω
3
j )

]
.� (A.5)

The slice t  =  t0 is conformal to the standard S3 iff f (t0) = 1 + t2
0. This leads to a relation 

between t0 and the parameters C and D which we do not give explicitly. For the mean curva-
ture of the spherical surfaces we obtain

K̃ = K̃ijg̃ij =

√
Λ

3D(1 + t2
0)

(
1
2

f ′(t0) + 2t0

)
.� (A.6)

For a more detailed discussion we restrict ourselves to maximal slices (still with round met-
rics), which satisfy f ′(t0) = −4 t0. A computation shows that

C = 2t0
t4
0 + 6t2

0 − 3
1 + t2

0
, D =

1 − t2
0

1 + t2
0

.� (A.7)

Assuming without loss that 0 � t0 < 1, the necessary and sufficient condition for the exis-
tence of such a t0 is

C = 4

√
1 − D
1 + D

1 − 2D − 2D2

1 + D
� (A.8)

and we are left with

g̃ij(t0) =
6D

Λ(1 + D)
gij, K̃ij(t0) = 3

√
3D
2Λ

√
1 − D

1 + D

(
2Ω1

i Ω
1
j −

2
3

gij

)
.

� (A.9)
One easily checks that this family of initial data is a map from 0 < D � 1 to solutions of 

the initial value constraints (1), as it has to be, and this map is injective. To make contact with 
case I. of theorem 1 in section 3. note that

φ2 =

√
6D

Λ(1 + D)
, u2 =

9D2(1 − D)

(1 + D)3� (A.10)

where we have used (41) with the choice v = 0 and (58). From the second relation in (A.10) 
we see that each u2 ∈ [0, 1

3 ) has 2 inverse images D ∈ [0, 1], and this corresponds precisely 
to the (at least) 2 solutions of the Lichnerowicz equations predicted by Premoselli’s theorem.

In any case we have shown that, with u2 given as above for 0 < D � 1, our case I of theo-
rem 1 evolves into a Λ—Taub—NUT metric with C given by (A.8). We finally notice that, for 
D close to 1 (which implies C close to 0) they must have regular future and past infinity as a 
consequence of Friedrich’s stability result theorem 3.3 of [12]. As to the global structure of 
the general case we refer to [3].
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