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Abstract
We consider the four-dimensional Einstein–Klein–Gordon–AdS system with
the conformal mass subject to the Robin boundary conditions at infinity. Above
a critical value of the Robin parameter, at which the AdS spacetime goes linearly
unstable, we prove existence of a family of globally regular static solutions (that
we call AdS Robin solitons) and discuss their properties.

Keywords: asymptotically anti de-Sitter spacetime, solitons, Robin boundary
condition
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1. Introduction

We consider the four-dimensional Einstein–Klein–Gordon–AdS system with mass μ related
to the negative cosmological constant Λ through μ2 = 2

3Λ. For this, and only this, value of
mass the system is conformally well-behaved at null and spatial infinity and consequently the
initial-boundary value problem is well-posed for a variety of different boundary conditions at
infinity [1, 2]. Here, we focus on the one-parameter family of Robin boundary conditions. It
has been known that along this family there is a critical parameter value at which the system
undergoes a bifurcation: the (zero energy) anti-de Sitter (AdS) spacetime becomes linearly
unstable above that critical value [3] and there emerges a pair of (negative energy) globally
regular static solutions (henceforth called AdS Robin solitons) [4]. The main goal of this paper
is to establish the existence of AdS Robin solitons rigorously and analyze the structure of the
bifurcation in more detail. In preparation of future analysis of the role of solitons in dynamics,
we also determine their spectrum of linearized perturbations.
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2. Setup

The Einstein–Klein–Gordon–AdS system is given by

Gαβ + Λgαβ = 8πG

(
∂αφ ∂βφ− 1

2

(
gμν∂μφ ∂νφ+ μ2φ2

)
gαβ

)
, (1a)

�gφ− μ2φ = 0, (1b)

where�g = gαβ∇α∇β is the wave operator associated with the metric gαβ , μ is the mass of the
scalar field, and Λ is a negative constant. We assume spherical symmetry and write the metric
in the form

g =
�2

cos2 x

(
−A e−2δ dt2 + A−1 dx2 + sin2 x dω2

)
, (2)

where (t, x,ω) ∈ (−∞,∞) × [0, π/2) × S
2, dω2 is the round metric on S

2 and �2 = −3/Λ.
The metric functions A, δ and the scalar field φ depend on (t, x). We choose units such that
� = 1 and 4πG = 1 and introduce new variables

f =
φ

cos x
and B =

A − 1
cos2 x

. (3)

Then the system (1) reduces to

(�ĝ − 1) f =
2 + μ2

cos2 x
f −

(
1 − 3 cos2 x

)
B f − μ2 sin2 x f 3, (4a)

cos x ∂xB = − B
sin x

− sin x (1 + B cos2 x)Φ− μ2 sin x f 2, (4b)

∂xδ = − sin x cos xΦ, (4c)

∂tB = −2A sin x (cos x ∂x f − f sin x) ∂t f , (4d)

where Φ = (cos x ∂x f − f sin x)2 + A−2 e2δ cos2 x (∂t f )2 and

�ĝ = −eδ∂t

(
A−1 eδ∂t

)
+

eδ

sin2 x
∂x

(
A e−δ sin2 x ∂x

)

is the polar wave operator associated with the conformal metric ĝαβ = cos2x gαβ . On the right
side of equation (4a) the derivatives of metric functions were eliminated using equations (4b)
and (4c).

In the following we set μ2 = −2. For this value of mass the wave equation (4a) is regular
at x = π/2 because the first term on the right side (which is the only singular term) vanishes3.
Thanks to this fact, the initial-boundary value problem for the system (4) is well posed for
a variety of boundary conditions at the conformal boundary (both reflective and dissipative)
[1, 2].4 In this paper we focus our attention on the one-parameter family of Robin boundary

3 This cancellation is due to the fact that for μ2 = −2 the left sides of equations (1b) and (4a) are asymptotically
conformal, that is (�g + 2)φ ≈ (cos x)−3(�ĝ − 1)f near x = π/2. However, the constraint equation (4b) has a singu-
larity at x = π/2 so it does not appear possible to extend the solutions ‘beyond infinity’ (cf [5] where an extension of
solutions across the conformal boundary at timelike infinity was analyzed for the system (1) with μ2 = 2

3Λ > 0).
4 This should be contrasted with the widely studied massless case for which only the Dirichlet boundary condition is
compatible with the basic requirement of finite total mass [6].
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conditions

∂x f − b f |x= π
2
= 0, (5)

where b is a constant (hereafter referred to as the Robin parameter). For b = 0 the Robin
condition reduces to the Neumann condition ∂x f |x=π/2 = 0.

Assuming (5) and expanding the fields in power series in z = π/2 − x we obtain the
following asymptotic behavior near z = 0

f (t, x) = α− bαz +O(z2), (6)

B(t, x) = α2 − (3bα2 + M)z +O(z2), (7)

δ(t, x) = δ∞ +
1
2
α2z2 +O(z3), (8)

where α(t) and δ∞(t) are free functions5 and M is a constant. To see the physical meaning of
M, let us define the renormalized mass function

m = −B tan x +
sin3 x
cos x

f 2. (9)

The first term on the right side is the Misner–Sharp mass function defined by mMS = r(1 + r2 −
gμν∂μr∂νr), where r = tan x is the areal radial coordinate. This function diverges as x → π/2
and the purpose of the second term (called the counterterm) is to cancel this divergence. The
leading order behavior of the counterterm is determined by the asymptotics (6) and (7) but
otherwise can be chosen freely. Using equation (4b) we get

∂xm = ρ sin2 x, (10)

where

ρ = A−1 e2δ(∂t f )2 + (∂x f )2 + f 2 + B(cos x ∂x f − f sin x)2, (11)

hence

m(t, π/2) =
∫ π/2

0
ρ sin2 x dx. (12)

This quantity can be interpreted as the bulk energy. From the asymptotic expansions (6) and
(7) it follows that

M = m(t, π/2) − bα2(t), (13)

where the second term on the right side can be viewed as the energy stored on the boundary.
Although both the bulk and boundary energies are time dependent, their sum M is conserved.
In what follows, we will refer to M as the total energy (mass). The exchange of energy between
the bulk and the boundary is a characteristic feature of systems subject to the Robin boundary
conditions. Note that some of the bulk energy is ‘lost’ to the boundary if b < 0 and ‘gained’
from the boundary if b > 0.

We remark that the expression (13) can be obtained in a systematic way within the dif-
feomorphism covariant Hamiltonian framework of Wald and Zoupas [7] (see section 2.2 in

5 We use the normalization δ(t, 0) = 0, hence t is the proper time at the center.
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[8]). Nonetheless, we believe that our hands-on approach, based solely on the analysis of the
system (4), is helpful in getting insight into not so widely known physics of the Robin boundary
conditions.

3. AdS Robin solitons

For time-independent solutions the system (4) with μ2 = −2 takes the form

(1 + B cos2 x) f ′′ + cot x
(
2 + (1 − 4 sin2 x)B + 2 sin2 x f 2

)
f ′ − f

+
(
1 − 3 cos2 x

)
B f − 2 sin2 x f 3 = 0, (14a)

cot x B′ +
B

sin2 x
+ (1 + B cos2 x) (cos x f ′ − sin x f )2 − 2 f 2 = 0, (14b)

δ′ + sin x cos x (cos x f ′ − sin x f )2 = 0, (14c)

where the derivatives of metric functions were eliminated from equation (14a) using
equations (14b) and (14c). It is routine to prove that this system has local solutions near x = 0
which behave as follows

f (x) ∼ c +
1
6

cx2, B(x) ∼ 2
3

c2x2, δ(x) ∼ −1
9

c2x4, (15)

where c is a free parameter.

Lemma. For any c the local solution (15) extends smoothly up to x = π/2 and fulfills the
boundary conditions (6)–(8).

Proof. To prove this lemma it is convenient to use the radial coordinate r = tan x and return
to the original field variables

φ(r) = f (x) cos x, A(r) = 1 + B(x) cos2 x. (16)

Then, equations (14a) and (14b) become

(1 + r2)Aφ′′ +

(
r(1 + r2)Aφ′2 + (1 + r2)A′ +

2 + 4r2

r
A

)
φ′ + 2φ = 0, (17a)

(1 + r2)A′ − 1 + 3r2

r
(1 − A) − 2rφ2 + r(1 + r2)Aφ′2 = 0. (17b)

The local solutions (15) translate to

φ(r) ∼ c − 1
3

cr2, A(r) ∼ 1 +
2
3

c2r2. (18)

We first observe that the function B = (A − 1)(1 + r2) is monotone increasing. To see this, sup-
pose that B(r) has a maximum at some point r0 > 0. Differentiating equation (17b), substituting
B′(r0) = 0, and eliminating φ′′(r0) and B(r0) using equations (17a) and (17b), respectively, we
get after simplifications

4
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B′′(r0) = 2φ′2 + 4r2φ2φ′2 + 4(rφ′ + φ)2|r=r0 , (19)

which is manifestly positive, contradicting that the point r0 exists. Since B(r) is positive for
small r > 0, this implies that A(r) � 1 for all r.

Next, we define a function

H =
1
2

(1 + r2)Aφ′2 + φ2. (20)

Using the system (17) we obtain

H′ = − (1 + r2)A(3 + r2φ′2) + 2r2φ2 + 3r2 + 1
2r

, (21)

which is manifestly negative, hence H(r) is a monotonically decreasing Lyapunov function.
Since A � 1, it follows that r2φ′2 and φ2 remain bounded for all r.

To determine the asymptotic behavior of solutions for r →∞ it is convenient to use the log-
arithmic radial variable τ = logr. In terms of τ the system (17) is asymptotically autonomous
for τ →∞ and the limiting autonomous system is

Aφ̈+ (3 + 2φ2)φ̇+ 2φ = 0, (22a)

Ȧ − 3(1 − A) − 2φ2 + Aφ̇2 = 0, (22b)

where dot denotes the derivative with respect to τ (by an abuse of notation, we use the same
symbols for the original and limiting systems). From the general theory of asymptotically
autonomous dynamical system [9, 10] and the existence of the Lyapunov function H, it follows
that the asymptotic behavior of solutions of the system (17) for τ →∞ is governed by the above
limiting system. Elementary analysis gives the attracting fixed point φ = 0, φ̇ = 0, A = 1 with
the leading order behavior

φ(τ ) = c1e−τ + c2e−2τ +O(e−3τ ), A(τ ) − 1 = c2
1e−2τ + c3e−3τ +O(e−4τ ),

(23)

where ck are free parameters, which are related to the free parameters α, b, and M in the
expansions (6) and (7) by

c1 = α, c2 = −bα, c3 = −3bα2 − M. (24)

This completes the proof. �

The above lemma ensures that for each c the solution starting with the initial conditions (15)
automatically satisfies the Robin condition f ′(π/2) = bf(π/2) for some parameter b (which
depends on c). We will refer to these globally regular static solutions as the AdS Robin solitons
(or just solitons for short) and denote them by (fs, Bs, δs). The profiles of solitons can be easily
determined numerically by integrating the system (14) with the boundary conditions (15). We
note in passing that an analogous reasoning leads to a two-parameter family of hairy black
holes (where the second parameter is the horizon radius).

As far as we know, the AdS Robin solitons and hairy black holes were first studied in the
literature in the context of so called ‘designer gravity’ [4, 11], however, to the best of our
knowledge, their existence remained unproven.

5
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4. Bifurcation analysis

It is illuminating to look at the solitons from the viewpoint of the local bifurcation theory. To
this end, consider the perturbation expansion of solitons for small c

b = b∗ + c2b2 +O(c4), f = c f1 + c3 f3 +O(c5), B = c2B2 + c4B4 +O(c6).

(25)

Inserting this expansion into the system (14) and requiring regularity at x = 0, at the lowest
order we get

b∗ =
2
π

, f1 =
x

sin x
, B2 =

x
sin x

(
− cos x +

x
sin x

)
. (26)

Calculations of higher orders are tedious and we relegate them to the appendix. In particular,
in (A9) we obtain the explicit expression for the coefficient b2

b2 =
π

6
(16 ln 2 − 1) +

1
π

(1 − 12ζ(3)) ≈ 1.010 09. (27)

The fact that b2 is positive means that at b∗ we have a supercritical pitchfork bifurcation where
the AdS solution bifurcates into a pair of solitons (±fs, Bs, δs). As usual, this kind of bifurcation
is associated with exchange of linear stability and, indeed, in the next section we will show that
for b > b∗ the AdS space becomes linearly unstable whereas the solitons are linearly stable.

Using (7) and the expansion (25), we get the approximation for the mass

Ms = B′(π/2) − 3bα2 
 3π
2

c2 + B′
4(π/2)c4 − 3

(
2
π
+ b2c2

)(π
2

c + f3(π/2)c3
)2

,

which upon substitution of (A4) and (A8) yields

Ms 
 −π2b2

8
c4 = − π2

8b2
(b − b∗)

2. (28)

It is instructive to rederive this result along the lines of designer gravity [4]. Letting α =
f(π/2) and β = f ′(π/2), we get from (25) (in this paragraph ‘ = ’ means equality up to order
O(c4))

α = f1(π/2) c + f3(π/2) c3, β = f ′1(π/2) c + f ′3(π/2) c3, (29)

which can be viewed as the parametric equation of the curve in the (α, β) plane. Eliminating c
we get the function

βs(α) =
2
π
α+

4b2

π2
α3, (30)

where the subscript ‘s’ indicates that the function is associated with solitons. Following the
approach used in designer gravity we introduce the effective potential

V(α) = 2
∫ α

0
βs(α

′)dα′ − bα2 = −(b − b∗)α
2 +

2b2

π2
α4. (31)

By construction, critical points of the effective potential correspond to solitons. The key obser-
vation, made by Hertog and Horowitz in [4], is that the value of the effective potential at

6
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Figure 1. Effective potentials for sample values of b.

the critical point is equal to the soliton mass. In our case, V′(α) = 0 for α2
s = π2

4b2
(b − b∗)

(and, of course, for α = 0 corresponding to the AdS space). Substituting this into (31) we get
Ms = V(αs) which reproduces the formula (28). Note that V′′(αs) > 0.

Further from the bifurcation point, the soliton function βs(α) and the corresponding effec-
tive potential V(α) can be determined numerically6. We find that for each b > b∗ the effective
potential has the shape of a Mexican hat (see figure 1) with exactly three critical points: the
local maximum at zero and two global minima at ±αs. This implies that the soliton solution is
unique (modulo reflection symmetry) and suggests that it is stable.

Remark. It is natural to expect that for any given b > b∗ the soliton is the ground state,
i.e. for any regular initial data satisfying the Robin condition (5) there holds the inequality
M � Ms which saturates if and only if the data correspond to the soliton [4]. Our numerical
constructions of initial data corroborate this conjecture but we have not been able to prove it
(see [8] for partial results in this direction).

5. Linear stability analysis

Linearizing the system (4) around the AdS solution ( f = B = δ = 0) and separating time
f(t, x) = eiωtv(x) we get the eigenvalue problem7

Lv = ω2v, where L = − 1

sin2 x
∂x

(
sin2 x ∂x

)
+ 1. (32)

The operator L (which is just the polar conformal Laplacian on the 3-sphere) is symmetric on
the Hilbert space L2

(
[0, π/2], sin2 x dx

)
and the Robin boundary condition

v′ − bv|x= π
2
= 0 (33)

provides a one-parameter family of its self-adjoint extensions.

6 For large values of c, there develops a boundary layer near x = π/2 with exponentially shrinking width. Using the
method of matched asymptotics one can show that both α and b grow as ec2

for c →∞ which makes the numerics (in
compactified variable x) cumbersome.
7 The eigenvalue problem (32) is a particularly simple case of the master eigenvalue problem for linear perturbations
of AdS space that was solved by Ishibashi and Wald in full generality using the properties of hypergeometric functions
[3]. For the reader’s convenience we reproduce their results in our special case using more elementary tools.

7
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Figure 2. Graphical solutions of the quantization conditions (35) and (38).

For ω2 > 0 the regular solution of (32) is

v(x) =
sin(ωx)
sin x

. (34)

Imposing the Robin condition (33) we obtain the quantization condition for the
eigenfrequencies

ω = b tan
(
ωπ/2

)
. (35)

From the graphical analysis shown in figure 2(a) we see that for each non-negative integer
n there is exactly one eigenfrequency ωn such that

2n + 1 < ωn < 2n + 2 if b < 0,

2n < ωn < 2n + 1 if 0 < b <
2
π
.

For large n the quantization condition (35) gives the asymptotically resonant spectrum

ωn = 2n + 1 − b
πn

+O
(

1
n2

)
. (36)

The lowest eigenvalueω2
0 vanishes at b = b∗ = 2/π; the corresponding eigenfunction is the

linearized static solution f1 given in (26). An elementary perturbative calculation gives near b∗

ω2
0 ≈ 6

π
(b∗ − b). (37)

For general b > b∗ there is an exponentially growing mode eλ0tv0(x), where the exponent λ0 =√
−ω2

0 is given by the unique positive root of the equation (see figure 2(b))

λ = b tanh
(
λπ/2

)
(38)

and the corresponding eigenfunction is v0(X) = sinh(λ0x)/sinx.
Next, we look at the linear stability of solitons. Linearizing the system (4) around the soliton

and separating time, we get the eigenvalue problem

8
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Lsv = ω̃2 v, (39)

where

Ls = −Ase−δs

sin2 x
∂x

(
Ase−δs sin2 x ∂x

)
+ Ase−2δs U (40)

and

U =1 + (3 cos2 x − 1)Bs + 4 sin2 x (2 − sin2 x) f 2
s

+ sin x cos x (8 sin2 x − 4) fs f ′s − cos2 x (2 + 4 sin2 x) f ′2s

+ 8 sin3 x cos3 x f 3
s f ′s − 4 sin4 x cos2 x f 4

s − 4 sin2 x cos4 x f 2
s f ′2s . (41)

For b slightly above b∗ (i.e. for small c), we have

Ls = L + c2 P +O(c4), (42)

where the operator P can be calculated using the expansions (25). To calculate the perturbations
of eigenvalues we assume the following ansatz

vn = cv∗n + c3un +O(c5), ω̃2
n = ω∗

n
2
+ γnc2 +O(c4), b = b∗ + b2c2 +O(c4),

(43)

where ω∗
n

2
and v∗n are the eigenvalues and normalized eigenfunctions of the operator L at the

bifurcation point and b2 is given in (27). Substituting this ansatz into the Robin boundary
condition we get at the first and third order in c

v∗n
′
(π/2) = b∗v

∗
n(π/2), u′

n(π/2) = b∗un(π/2) + b2v
∗
n(π/2). (44)

Substituting the ansatz (43) into (39), we get at the third order in c

Lun + Pv∗n = ω∗
n

2
un + γnv

∗
n . (45)

Projecting this equation on v∗n and noting, via (44), that

(v∗n , Lun) = (v∗n
′
un − v∗nu′

n)|x= π
2
+ (un, Lv∗n) = −b2v

∗
n

2(π/2) + ω∗
n

2(un, v∗n), (46)

we obtain the leading order approximation for the eigenvalues

ω̃2
n(c) ≈ ω∗

n
2
+ γnc2, γn = (v∗n , Pv∗n) − b2v

∗
n

2
(π/2). (47)

In particular, for the lowest eigenvalue we obtain

ω̃2
0 ≈ γ0c2, (48)

where

γ0 = 32 log 2 − 2 +
1
π2

(12 − 144ζ(3)) ≈ 3.8582. (49)

The positivity of γ0 confirms the expectation that the solitons are linearly stable near the bifur-
cation point. Solving the eigenvalue problem numerically, we find that the eigenvalues ω̃2

n

9
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Table 1. The first six eigenfrequencies of linear perturbations around
the soliton for the parameter c = 0.1. In the second row the approximate
eigenfrequencies given by (47) are shown for comparison.

n 0 1 2 3 4 5

ω̃n 0.197 35 2.870 65 4.930 28 6.957 14 8.973 63 10.985 49
ω̃pert

n 0.196 42 2.870 62 4.930 25 6.957 11 8.973 60 10.985 46

grow monotonically with c. The numerical values of the first few eigenfrequencies (as mea-
sured by the central observer) for a small parameter c = 0.1 (corresponding to b ≈ 0.6467) are
displayed in table 1.

From the leading order WKB approximation [12] it follows that for large n

ω̃n =
2n + 1

a
+O

(
1
n

)
, a =

2
π

∫ π/2

0
A−1

s eδs dx, (50)

which compares well with numerical results even if n is not very large.

6. Discussion

The Einstein–Klein–Gordon–AdS system with mass μ2 = 2
3Λ < 0 is well-behaved at the con-

formal boundary which makes it a good toy model for studying the role of boundary conditions
in dynamics of asymptotically AdS spacetimes [13]. In this paper we focused on the Robin
boundary conditions and proved existence of a one-parameter family of solitons for b > b∗.
We also demonstrated that the linearized perturbations around these solitons have no growing
modes. A natural question is: are the AdS Robin solitons nonlinearly stable? Numerical sim-
ulations, to be reported in [14], indicate a positive answer and provide evidence for existence
of plethora of time-periodic and quasiperiodic solutions, not only in the perturbative regime
(which is expected in view of the non-resonant spectrum) but also, somewhat surprisingly, for
large perturbations.

Of course, the analogous question of nonlinear stability arises for the AdS spacetime for
b < b∗. However here, in contrast to the Dirichlet case [6], the numerical simulations are as
yet not conclusive and we leave this question to future investigations.
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Appendix

Here we give the details of the higher orders of perturbation expansion (25). At the third order
equation (14a) becomes

f ′′3 + 2 cot x f ′3 − f3 = −B2 cos2 x f ′′1 − cot x
(
(1 − 4 sin2 x)B2

+ 2 sin2 x f 2
1

)
f ′1 − (1 − 3 cos2 x)B2 f1 + 2 sin2 x f 3

1 . (A1)

10
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Substituting f1 and B2, given in (26), into the right hand side and imposing f3(0) = 0, we find

f3(x) =
1

12 sin x

(
(5 − 24ζ (3)) x + 3x cos (2x) − 2x3

sin2 x
− 3 sin (2x)

+ 16x3C1(x) − 48x2S2(x) − 72xC3(x) + 48S4(x)
)

, (A2)

where ζ is the Riemann zeta function and we defined the functions

Sn(x) =
∞∑

k=1

sin(2kx)
kn

, Cn(x) =
∞∑

k=1

cos(2kx)
kn

. (A3)

From (A2) we read off

f3

(π
2

)
=

π

48

(
4 − π2(8 ln 2 + 1) + 60ζ(3)

)
≈ 0.754 316, (A4)

f ′3
(π

2

)
=

2
3
+

π2

8
(8 ln 2 − 1) − 7

2
ζ (3) ≈ 2.066 86. (A5)

At the fourth order equation (14b) becomes

cot x B′
4 +

1

sin2 x
B4 =− B2 cos2 x (cos x f ′1 − sin x f1)2

− 2(cos x f ′1 − sin x f1)(cos x f ′3 − sin x f3) + 4 f1 f3.

(A6)

Substituting (26) and (A2) into the right hand side and requiring regularity at x = 0, we find

B4(x) =
1
6

x
(

cot x − x

sin2 x

)
(24ζ(3) − 5) + 4x

(
2 cot x − 3x

sin2 x

)
C3(x)

+ 4x2

(
cot x − 2x

sin2 x

)
S2(x) −

(
6 cot x − 8x

sin2 x

)
S4(x) +

3
4

cos2 x

+

(
3
4
+

1
3

x2

)
cot2 x +

8x4

3 sin2 x
C1(x) + x2

(
1

4 sin2 x
− 3

4
− 1

3
x2

)

− x cot x

(
1 − x2 +

1
4

cos(2x) +
x2

2 sin2 x

)
, (A7)

from which we read off

B′
4

(π
2

)
=

π

48

(
54 + π2(32 ln 2 − 11)

)
≈ 10.7566. (A8)

Using (A4) and (A5) and imposing the Robin condition in the expansion (25), we get

b2 =
2
π

(
f ′3 −

2
π

f3

)∣∣∣∣
π/2

=
π

6
(16 ln 2 − 1) +

1
π

(1 − 12ζ(3)). (A9)
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