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Abstract
We revisit the construction of maximal initial data on compact manifolds in
vacuum with positive cosmological constant via the conformal method. We
discuss, extend and apply recent results of Hebey et al (2008 Commun. Math.
Phys. 278 117) and Premoselli (2015 Calc. Var. 53 29–64) which yield exis-
tence, non-existence, (non-)uniqueness and (linearization-) stability of solutions
of the Lichnerowicz equation, depending on its coefficients. We then focus on
so-called t( , )ϕ -symmetric data as ‘seed manifolds’, and in particular on
Bowen–York data on the round hypertorus 2 × (a slice of Nariai) and on
Kerr–deSitter (KdS). In the former case, we clarify the bifurcation structure of
the axially symmetric solutions of the Lichnerowicz equation in terms of the
angular momentum as a bifurcation parameter, using a combination of analytical
and numerical techniques. As to the latter example, we show how dynamical
data can be constructed in a natural way via conformal rescalings of KdS data.

Keywords: rotating cosmology, Lichnerowicz equation, Bowen–York, Kerr–
deSitter, conformal method

(Some figures may appear in colour only in the online journal)

1. Introduction

We start with two definitions.

Definition 1. As initial data (ID) g K( , , )ij ij ∼ ͠ (i, j, = 1, 2, 3) for vacuum with positive

cosmological constant Λ we take a compact 3-dim. Riemannian manifold  with smooth
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metric gij
∼ and smooth second fundamental form Kij͠ which is maximal g K 0ij

ij =∼ ͠ and satisfies
the constraints

R K K K2 , 0. (1)ij
ij

i
ijΛ= + =͠ ͠ ͠∼

Here  and R
∼

are the covariant derivative and the scalar curvature of gij
∼ .

Definition 2. A seed manifold (SM) g K( , , )ij ij consists of a compact 3-dim. manifold
g( , )ij with smooth metric in the positive Yamabe class, and of a smooth trace-free and

divergence-free tensor Kij on .

The conformal method is the art of turning a SM into an ID via conformal rescaling [24].
In the present setting it remains to be shown that the Lichnerowicz equation

R( )
1

8

1

4 8
0 (2)5

2

7
⎜ ⎟⎛
⎝

⎞
⎠Φ ϕ Δ ϕ Λϕ Ω

ϕ
≔ − − − − =

has a smooth, strictly positive solution ϕ, where Δ and R are the Laplacian and the scalar
curvature of gij, and K Kij

ij
2Ω = . In this case the ‘physical’ quantities

g g K K, (3)ij ij
ij ij4 10ϕ ϕ= =∼ ͠ −

indeed satisfy the constraints (1).
In view of the observed small positive value of Λ, and due to the naturality of the

assumption of maximality of the data, we are dealing here with a physically very realistic case
of the Lichnerowicz equation. It is precisely this case, however, which involves rather
intricate mathematical problems. Firstly, solutions definitely do not exist for large 2Ω which
is rather easy to see in principle either from the maximum principle, or by integrating (2). On
the other hand, existence proofs for small 2Ω are subtle, in particular when 2Ω is allowed to
have zeros [18–20, 31]. However, in physically meaningful situations 2Ω does have zeros—in
the axially symmetric (AS) case, on which we focus in this paper and which is simple in other
respects, 2Ω in fact typically vanishes on the axis (see section 3).

There are now available two types of general existence and non-existence results which
cover the case of present interest. The first one, due to Hebey et al [19] (see also [18, 20])
guarantees existence of solutions if 2

∫ Ω is small, and proves non-existence if 5 6

∫ Ω is

large. In either case, the bounds can be given explicitly in terms of the Yamabe constant of 
and other integrals over . However, there is a Ω-‘gap’ which is not covered by these
results. In the second theorem, due to Premoselli [31], Ω is written as b 0Ω Ω= for some
(fixed) function 0Ω and (variable) constant b 0> , and the result is ‘gap free’: it is asserted
that there is a constant b* (0, )∈ ∞ such that (2) has at least two positive solutions for all
b b*< , a unique solution for b b*= and no solution for b b*> . Moreover, for every b b*⩽
there is a unique stable, ‘minimal’ solution. We remark, however, that in this theorem there is
no direct information about b* in terms of more familiar geometric quantities of .

In this work we start (in section 2.1) with defining (in definition 3) (linearization-)
stability of solutions of (2) and of ID (under conformal deformations), which will be key in
what follows. In particular we prove proposition 1 which guarantees instability if

K Kij
ij2Ω Λ= <͠ ͠͠ . Another important issue in our work is ‘symmetry-inheriting’ versus

‘symmetry-breaking’ of solutions, by which we mean solutions of (2) which share (or do not
share) all symmetries of the equation. In section 2.2. we prove a simple result (proposition 2)
which ensures symmetry inheritance for stable solutions in the case of continuous
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symmetries. We proceed in section 2.3 by reviewing the theorems of Hebey et al and
Premoselli mentioned above. As small complements to the latter result, we clarify (in pro-
position 3) how the stable, minimal solutions of (2) approach zero as b 0→ . Moreover, in
proposition 4 we employ an argument from bifurcation theory to show that near the maximal
value b*, there are precisely two solutions.

The core of our paper is section 3 where we apply the results sketched above to certain
‘ t( , )ϕ - symmetric data’ as introduced and discussed in [15, 16]. There one sets out from an
AS ‘twist potential’ ω from which there is constructed an AS, symmetric, trace-free and
divergence free tensor Kij. The SM constructed in this way ‘rotate’ in general, and the
(Komar-) angular momentum J of any selected 2-surface is given directly in terms of the
values of ω on the axis via J8 [ (0) ( )]π ω ω π= − . We focus on two different classes of SM
( g, ij ) as examples: in section 3.3. we consider a ‘round hypertorus’, i.e. 2 1 × with a

round 2 . We first review the case without angular momentum where the solutions of (2)
yield the time symmetric Kottler (Schwarzschild–deSitter) data. Then we consider a Kij of
‘Bowen–York form’ [4, 6] as the simplest non-trivial rotating model. Applying the results of
Hebey et al [19] we find (in theorem 3) that small angular momenta (compared to 1Λ− , and
taken w.r.t. the 2 surfaces) guarantee existence of solutions of (2) while large ones exclude
existence. Finally, we apply Premoselli’s theorem [31]. Combined with auxiliary results from
bifurcation theory, with results on stability and symmetry collected in section 2, as well as
with numerical methods, we are able to clarify the bifurcation structure of the axially sym-
metric solutions in terms of the bifurcation parameter b J3 2Λ= : firstly, there is a pair of
‘principal’ branches consisting of stable and unstable solutions all of which inherit the
O O(2) (2)× - symmetry of the SM. These branches emanate at J = 0 from the solutions

0ϕ ≡ and 1ϕ ≡ , respectively, and meet at some marginally stable solution *ϕ corresponding
to a maximal angular momentum J*. Moreover, off certain points on the unstable principal
branch there bifurcate branches which break the O(2)-symmetry along the  direction, and
which terminate at the Kottler solutions in the limit of vanishing angular momentum. We
summarize these facts as conjecture 1, which also includes the hypothesis that there are no
solutions which break the axial symmetry (AS) on 2 .

In section 3.4 we consider as SM the standard maximal slice of Kerr–deSitter (KdS). For
any fixed Λ, we take a family of t( , )ϕ -symmetric data generated by

r J a m J r a m J( , , , , , ) ( , , , , )K Kω θ Λ ω θ Λ= , where θ and r are ‘Boyer–Lindquist’ coordi-
nates, J is the ‘true’ angular momentum and Kω is the twist potential generating KdS with
angular momentum J ma a(1 3)K

2 2Λ= + − in terms of its standard parameters m and a. This
example is particularly well suited to illustrate Premoselli’s result [31]: choosing b J3 2Λ=
as above, it trivially implies existence of solutions to (1) for all J JK⩽ . More interestingly, it
also shows that KdS can be ‘overspun’ in the sense that there exist data with J JK> as long as

they remain strictly unstable. The latter is guaranteed in particular by the criterium 2Ω Λ<͠ of
section 2.1 mentioned above, but in any case for sufficiently small JK and small J JK− (again
compared to 1Λ− ). These facts are collected in theorem 4.

2. Stability, symmetry, existence and non-existence

2.1. Stability

In the following discussion we refer to SMs and IDs as defined in definitions 1 and 2. As a
rule the metric and the second fundamental form of IDs will carry tildes. We note, however,
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that the SM in our examples (sections 3.3 and 3.4) trivially satisfy the constraints as well, so
they are IDs on their own. Hence the task here is actually to generate non-trivial IDs from
trivial ones.

We first define and discuss here (linearization-) stability of solutions of (2) under con-
formal deformations, which will be crucial in the following results. The linearized operator Lϕ
corresponding to (2) applied to some function γ reads

L
R

8

5

4

7

8
. (4)4

2

8
⎜ ⎟⎛
⎝

⎞
⎠γ Δ γ Λ ϕ γ Ω

ϕ
γ≔ − − − +ϕ

Definition 3.

(1) A solution ϕ of (2) on a SM g K( , , )ij ij is called strictly stable, stable, marginally
stable, unstable or strictly unstable if the lowest eigenvalue ς in (4) at ϕ satisfies 0ς > ,

0ς ⩾ , 0ς = , 0ς ⩽ , or 0ς < , respectively.
(1) ID given by equation (1) are said to have lowest eigenvalue ς (under conformal

deformations) if (4) has this lowest eigenvalue at 1ϕ ≡ . The ID are called strictly stable
if 1ϕ ≡ is strictly stable, and analogous definitions for ID apply with the other stability
properties.

The natural question raised by these definitions is resolved as follows.

Lemma 1. A strictly stable solution ϕ of (2) on a SM g K( , , )ij ij defines via (3) strictly

stable ID g K( , , )ij ij ∼ ͠ . The same applies to the other stability properties of definition 3.

Proof. We show, more generally, that only the conformal class of the SM matters for
stability of the solution of (2) and for the resulting ID. We first note that (2) is obviously
conformally invariant in the sense that when ϕ solves (2) and defines ID

g g K K( , , )ij ij ij ij
4 2 ϕ ϕ= =∼ ͠ − , then 1ϕ ϑ ϕ= − solves (2) on the SM

g g K K( , , )ij ij ij ij
4 2  ϑ ϑ= = − and defines the same ID. A conformal covariance property

also holds for the linearization operator (4) in the sense that the rescaling 1γ ϑ γ= − gives
L L5γ ϑ γ=ϕ ϕ

− in terms of Lϕ on  . A subtlety now arises since the eigenvalue equation
L μ λμ=ϕ is obviously not conformally invariant (when the eigenfunction μ is scaled as
above) and the same applies to the eigenvalues themselves. However, what matters for
stability is only the sign (or the vanishing) of the lowest eigenvalue ς. To show that this is
actually invariant we recall the Rayleigh–Ritz characterization

L v
inf

d
(5)

C , 0 2





∫
∫

ς
γ γ

γ
=

γ γ

ϕ

∈ ≢∞

and note that its numerator is invariant, while the denominator is manifestly positive. The
statement of the Lemma is now obtained by setting ϑ ϕ= in the above arguments. □
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Remarks.

(1) Recalling that the eigenvalues λ depend on the conformal scaling of the metric in general,
we denote by λ∼ the eigenvalues w.r.t to the generated ID (i.e. when 1ϕ ≡ in (4)).

(2) The above definitions of stability under conformal deformations have nothing to do with
dynamical stability of the solutions evolving from the data. We will return to this issue in
connection with the KdS example in section 3.4.

Proposition 1. Let g K( , , )ij ij ∼ ͠ be ID with volume V
∼

and lowest eigenvalue ς∼. Then

(1)

( )v Vd . (6)2

∫ Ω Λ ς⩾ +∼ ∼͠ ∼

(2) If 2Ω Λ⩽͠ and 2Ω Λ≢͠ on  , then the ID are strictly unstable.
(3) If 0Ω ≡͠ , then ς Λ= −∼ , while 2Ω Λ≡͠ implies 0ς =∼ .

Proof. Combining (1) with (4) for 1ϕ ≡ we find

( ) , (7)2Δ ζ Ω Λ ς ζ= − − ∼∼ ∼͠∼

where ζ∼ is the eigenfunction corresponding to the lowest eigenvalue ς∼. As ζ∼ has no zeros it
can be chosen to be positive. Dividing by ζ∼ and integrating, we obtain

( ) ( )v Vd (8)2 2 2


∫ Ω ζ ζ Λ ς− ∣ ∣ = +∼ ∼∼ ∼͠ ∼−

which implies assertions (1) and (2). Point (3) is a consequence of the maximum principle
applied to (7). □

Remark. We wish to clarify here an important point which arises by combining lemma 1
with proposition 1: these results do not imply that any solution of (4) with Ω small enough on
a SM  leads to unstable ID  . Rather, the tilde on 2Ω͠ in the requirement

2 12 2Ω ϕ Ω Λ= ⩽͠ − of proposition 1 must not be overlooked. In fact, the stable examples with
small Ω but large Ω͠ (and hence small ϕ) will play a key role below.

2.2. Stability and symmetry

We recall from the introduction that ‘symmetry-inheriting’ and ‘symmetry breaking’ are the
properties of solutions of (2) of (not) sharing all symmetries of the equation. This behaviour is
related to (in-)stability of solutions; we will observe it in the Bowen–York example of
section 3.3.3. We note here the following

Proposition 2. Assume that a SM g( , )ij and Ω have a continuous symmetry ξ, i.e.

g 0, 0, (9)ij  Ω= =ξ ξ
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where ξ is the Lie derivative. Then all stable solutions of (2) are invariant as well, i.e.

0. (10) ϕ =ξ

Proof. We first note that, for any solution ϕ of (2),  ϕξ is a solution of the linearized
equation: using that the Lie derivative ξ commutes with Δ and R for invariant metrics gij
gives the second equation in

( )R
L0

8 4 8
(11)5

2

7
 ⎜ ⎟

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎤
⎦⎥Δ ϕ Λϕ Ω

ϕ
ϕ= − + + =ξ ξ

while the first one is obvious from the fact that ϕ solves (2).
Next, as ϕ is stable, the lowest eigenvalue of L is non-negative. As already noted in

section 2.1, the lowest eigenvalue is always non-degenerate and the corresponding
eigenfunction has no zeros. It follows from (11) that either 0 ϕ ≡ξ which we want to
prove, or that  ϕξ is a ground state eigenfunction with eigenvalue zero and without zeros; by
changing the sign of ϕ if necessary, we thus have

0. (12) ϕ >ξ

This we rule out as follows. Since iξ is a Killing vector, (12) can be rewritten as

( ) 0. (13)i
i ϕξ >

But as  is compact, the lhs integrates to zero and gives a contradiction. □

We remark that arguments along the lines above can be and have been applied to a large
class of semilinear and quasilinear elliptic equations on compact manifolds (see e.g. section 8
of [2]).

2.3. Existence, non-existence and stability

We adapt here the results of Hebey et al [18–20] and Premoselli [31] to the present context in
order to obtain bounds on Ω and its integrals in terms of geometric quantitites, which
guarantee existence or non-existence of solutions of (2). Premoselli’s result also has an impact
on the relation between stability and symmetry, which we state in corollary 1 after the
theorem.

We remark that the results [19, 31] refer to a more general equation than (2) in which R
and Λ can be replaced by a large class of functions. A feature of the present equation (2)
already noted in section 2.1 is its conformal invariance which is obvious from the purpose
which is serves, and which simplifies the (non-)existence criteria.

Turning now to the results of [19], we first note that the existence result theorem 3.1 is
indeed formulated in an invariant way under conformal rescalings g gij ij

4 ϑ= of the SM

provided the test function φ is assigned the conformal weight 1φ ϑ φ= − . On the other hand,
the non-existence result, theorem 2.1 of [19] is not conformally invariant. We reproduce these
results below (theorem 1) under the simplifying assumption that the SM has constant cur-
vature. Needless to say, this restriction breaks conformal invariance. In the examples dis-
cussed below, the SM 2 × of section 3.3 has constant curvature R 2Λ= while the KdS
data of section 3.4 have not.
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In the existence criterium (15), there enters the Yamabe constant

( )
Y

R v

v

inf
8 d

d

. (14)
C , 0

2 2

6
1 3




⎜ ⎟⎛
⎝

⎞
⎠

∫

∫

γ γ

γ
=

∣ ∣ +

γ γ∈ ≢∞

We note that Y is conformally invariant. Moreover, by virtue of Yamabe’s theorem [27], there
always exists a scaling which minimizes Y, and such a minimizer has constant curvature.
Therefore, the definition (14) can be reduced to Y RVinf( )2 3= where V is the volume of ,
and the infimum is taken over all metrics with R const.= within the conformal class.

We also remark that, in order to have a chance of satisfying (1) it is clear that we have to
set out from SM g( , )ij which are in the positive Yamabe class, i.e. Y 0> .

Theorem 1. We take a SM g K( , , )ij ij as defined in definition (2) but with constant scalar
curvature R.

(1) Assuming that

v
Y

R V
d

256
. (15)2

6

2 3 3∫ Ω
Λ

⩽

Equation (2) has a smooth, positive solution.
(2) Assume that

v
R V

d
3

(16)5 6
5 4

5 4 5 6∫ Ω
Λ

>

then (2) has no smooth, positive solution.

Proof. For 0Ω ≡ the first part is obvious from Yamabe’s theorem [27]. Otherwise, this part
is a direct application of theorem 3.1 of [19], observing that the Sobolev constant Sh of this
theorem is related to the Yamabe constant Y via Y S( 8) 1 h

3 = in the present situation, and
setting the ‘test function’ 1φ ≡ . (Thereby we are likely to miss the optimal numerical factor
on the rhs of (15)). The second part follows readily from theorem 2.1 of [19] except for the
fact that 0Ω > was required there. The extension which allows for zeros in Ω is covered by
theorem 3 of [18]. □

We now rewrite Premoselli’s results [31].

Theorem 2. We decompose b 0Ω Ω= in (2) (in a non-unique way) in terms of a constant
b 0> and a function 0Ω . The following statements refer to the solubility of (2) on a SM
depending on the choice of b, when 0Ω is kept fixed: there exists b0 *< < ∞ such that
(2) has

(1) At least two positive solutions for b b*< , at least one of which is strictly stable.
Moreover, one of the strictly stable solutions, called b( )ϕ , is ‘minimal’ in the sense that
for any positive solution b( )ϕ ϕ≢ we have b( )ϕ ϕ> .

(2) A unique, positive solution for b b*= which is marginally stable.
(3) No solution for b b*> .
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Proof. These statements just combine theorem 1.1, proposition 3.1 (positivity of solutions)
and proposition 6.1 (stability) of [31]. (The statement of strict stability in point (1) is not
explicit in the formulation of the latter proposition, but contained in its proof.) □

The following extension of proposition 2 is an immediate consequence of this theorem.

Corollary 1. If g( , )ij and Ω have a discrete symmetry, then the stable ‘minimal’ solution
of point (1) in Premoselli’s theorem, as well as the unique solution of point (2) of this theorem
share this symmetry.

As typical for nonlinear equations, we expect bifurcations to occur among the set of
solutions of (2). While the detailed behaviour of this set will depend on gij, Λ and Ω,
Premoselli’s theorem indicates that b plays a distinguished role as bifurcation parameter. The
key values of b for understanding the structure of the solutions are b = 0, and the ‘critical’
values by which we mean those for which the linearized operator (4) has a non-trivial kernel.
The latter is the case in particular at b b*= , but in general (and in particular in the Bowen–
York example in section 3.3.3) more such critical values will show up.

We first discuss b = 0. While Premoselli’s theorem does not apply to this case, it is
known that equation (2) has at least two solutions:

0ϕ > : we first mention the special case R 2Λ= where there is the trivial solution ϕ ≡ 1;
however, there are many more (Kottler-) solutions which we revisit in section 3.3.1. In the
general case, Yamabe’s theorem mentioned above guarantees the existence of at least one
positive solution. We now observe that all regular solutions are necessarily unstable in the
sense of definition 3; this follows from point (3) of proposition 1, while point (2) shows that
instability still holds for small b 6

0Ω ϕ Ω=͠ − and therefore small b. However, in this context
it is important to avoid an instructive catch: Premoselli’s theorem asserts the existence of at
least one stable solution for all small enough b (and therefore, for small enough b 0Ω Ω= ).
The key to resolving this issue is the same as in the remark after proposition 1, namely a
tilde: b6 6

0Ω ϕ Ω ϕ Ω= =͠ − − . We are led to the conclusion that the conformal factor ϕ
which generates the stable branch of solutions from any SM must go to zero when b 0→ in
order to allow Ω͠ to violate the instability condition 2Ω Λ<͠ (or its integral). This leads us
to the other solution of (2) for b = 0, namely

0ϕ ≡ : while useless as conformal factor, the above arguments indicate that this solution is
the origin of the unique ‘minimal’ branch of Premoselli’s theorem. Proposition 3 confirms
and clarifies this.

In the following result the rescaling b 1 4ψ ϕ= − will be crucial. In terms of this variable,
we obtain from (2)

R
b

( )
1

8 4 8
0. (17)5 0

2

7
⎜ ⎟⎛
⎝

⎞
⎠Ψ ψ Δ ψ Λψ

Ω
ψ

≔ − − − − =

More precisely, (17) is equivalent to (2) only for b 0> , but we consider the former equation
for b 0⩾ . Note that the constant b which controlled the size of the momentum term in (2)
now scales the cosmological constant in (17).
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We also introduce the linearization at some ψ,

L R
b1

8

5

4

7

8
. (18)4 0

2

8
⎜ ⎟⎛
⎝

⎞
⎠γ Δ γ Λψ γ

Ω
ψ

γ= − − − +ψ

Proposition 3. For sufficiently small b 0⩾ , the equation (17) on a given SM g K( , , )ij ij
has a unique, positive, strictly stable solution b( )ψ .

Proof. For b = 0, it can be shown via the sub- and supersolution method [25] that the
resulting Lichnerowicz equation (17) has a unique, positive solution 0ψ . Next, strict stability
follows readily from the linearization

L R
1

8

7

8
. (19)0

0
2

0
8

⎜ ⎟⎛
⎝

⎞
⎠γ Δ γ

Ω
ψ

γ= − − +

In particular, using that the Yamabe constant of  is positive, L0 has a trivial kernel. This
allows application of the implicit function theorem and indeed yields the desired
conclusion. □

Remark. For b 0⩾ we clearly recover here the beginning of the unique strictly stable
minimal branch of solutions from point (1) of Premoselli’s theorem. Note that, for b 0→ ,
regularity of ψ indeed entails 0ϕ → , as anticipated in the discussion above and in the remark
after proposition 1. Bounds on integral norms of ϕ in terms of b, λ, Λ and 0Ω can be derived
via equation (6) but will not be given here.

We now turn to the critical values of b. As the analysis is slightly simpler in terms of the
variable ψ compared to ϕ, we continue working with (17) and its linearization (18) rather than
with the equivalent original Lichnerowicz equation (2).

Here the only simple case is the marginally stable (lowest eigenvalue zero) one, which
arises in particular at the maximal value b b*= . In this case a simple bifurcation analysis
leads to the following behaviour of the solutions:

Proposition 4. Assume that cψ is a marginally stable solution of (17) for some value bc.
Then there is a solution curve b s s( ( ), ( ))ψ near cψ which ‘turns to the left’ (i.e. towards
smaller values of b) at b( , )c cψ . This entails that there is an 0ϵ > such that for all
b b b( * , *)ϵ∈ − there are precisely two solutions, at least one of which is strictly stable.

Proof. The requirements of the Crandall–Rabinowitz theorem in the form theorem 3.2 of
[13] are as follows:

(1) The kernel cυ of the linearization Lc defined in (18), and of its adjoint, are one-
dimensional at the critical solution cψ .

(2) The derivative bd d bcΨ ∣ of the Lichnerowicz operator (17) is not in the range of the
linearized operator at bc.
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Now (1) follows from the assumption of marginal stability and the fact that Lc is self
adjoint in the present case. Proving (2) is equivalent to showing that

L
1

4
(20)c c

5γ ψ=

has no solutions. Assuming the contrary and using the fact that the ground state eigenfunction
cυ can be chosen to be positive, we indeed obtain the contradiction

L L0
1

4
0. (21)c c c c c c

5

  ∫ ∫ ∫γ υ υ γ ψ υ= = = >

From the Theorem we conclude that near the bifurcation point b( , )c cψ there is a curve of
solutions b s s b s s s( ( ), ( )) ( ( ), ( ))c c cψ β ψ υ τ= + + + with

(0) (0) (0) (0) 0β β τ τ= ′ = = ′ = . To compute (0)β″ we differentiate equation (17) twice
with respect to s and evaluate at s = 0

( )L b7 5
(0)

4
0. (22)c c c c c c c0

2 9 3 2 5ψ Ω ψ Λψ υ Λβ υ″ − + −
″

=−

Multiplying this equation by cυ , equation L 0c cυ = by cψ″ and subtracting we obtain

( )b
(0)

4 7 5
0. (23)

c c c c

c c

1
0
2 9 3 3

5





∫
∫

β
Λ Ω ψ ψ υ

ψ υ
″ = −

+
<

− −

Thus, b( , )c cψ is the turning point at which the curve of solutions turns to the left. □

Regarding the behaviour of the solution curve near general critical values bc (i.e. with
negative lowest eigenvalue), it depends largely on the precise form of the equation. We
proceed with discussing examples.

3. t ;φð Þ-symmetric SM

3.1. Angular momentum

We recall here standard material on AS and on the angular momentum of compact 2-surfaces
of spherical topology. A SM g K( , , )ij ij is AS iff the circle group acts effectively on  and
its set of fixed points is non-empty. This implies the existence of a Killing field iη with fixed
points along an axis, such that

g K 0. (24)ij ij = =η η

The angular momentum J of a compact 2-surface  in an AS SM is given by

J K S
1

8
d . (25)ij

i j

∫π
η=

Since our definition 2 of a SM contains the requirement that Kij is divergence-free, all
homologous 2-surfaces have the same angular momentum. This implies that, in order for J to
be non-zero, the homology group H ( )2  must be non-trivial. We also note that the above
definition of J is conformally invariant.

When the SM is AS, so are the stable solutions of (2) by proposition 2 above. The same
then applies to the ID and, by standard ADM evolution, to the evolving spacetime g( , ) ∼

μν
( , 0, 1, 2, 3)μ ν = . Any AS spacetime satisfies

Class. Quantum Grav. 32 (2015) 175015 P Bizoń et al

10



R g g, 0, (26)Λ= =∼ ∼∼
μν μν η μν∼

where R
∼

μν the Ricci tensor of g∼μν and η∼μ is the spacetime Killing vector.
The angular momentum and its properties can alternatively be discussed in terms of

spacetime quantities. In particular, the definition (25) now reads

J S
1

8
d , (27) ∫π

η= ∼μ ν
μν

where μ denotes the covariant derivative of g∼μν, and Sdμν is the volume element of  . From
(26), the integrand of (32) satisfies

( ) R . (28)   η η Λη= − = −∼ ∼ ∼∼
μ

μ ν
μ
ν ν ν

We now recover the spacetime version of the invariance result for J: by Gauss’ theorem,
(28) implies that all 2-surfaces  which are homologous and bound an AS 3-surface have the
same angular momentum.

We next introduce the twist vector ω∼μ of the Killing vector η∼μ

, (29)ω ϵ η η= ∼ ∼ ∼∼
μ μνστ

ν σ τ

where ϵ∼μνστ is totally antisymmetric and gdet0123ϵ = ∣ ∣∼ ∼
μν . ω∼μ is curl-free by virtue of (26),

i.e. 0.[ ] ω =∼
μ ν Hence there exists locally a twist potential ω∼, defined up to a constant, such

that ω ω=∼ ∼
μ μ .

For an AS 2-surface  ⊂ of spherical topology, the twist potential allows the fol-
lowing reformulation of the angular momentum (equivalent to (25) and (27))

J N S
1

8
[ ( ) ( )], (30)ω ω= −

where N and S are the poles of  .

3.2. t ;φð Þ-symmetric SM

Bardeen [3] investigated data for rotating stars which, in terms of particle physics termi-
nology, enjoy a PT-invariance, i.e. their evolution is invariant under the simultaneous change
of time and spin direction. Following Dain [15] and Dain et al [16] who systematically
investigated such SM we call them t( , )φ - symmetric. This construction can be summarized as
follows.

Definition 4. An AS SM g K( , , )ij ij is called t( , )φ symmetric (TPSM) if

(1) The axial Killing field iη is hypersurface orthogonal, i.e. 0ijk
i j kϵ η η = where jklϵ is

totally antisymmetric and gdet ij123ϵ = .
(2) Kij satisfies

K K q q0 and 0, (31)ij
i j

ij
ik jlη η = =

where q gij ij i j
1η η η= − − .

We now state a well-known result which yields an alternative formulation of a TPSM.

Proposition 5.

(1) Let g K( , , )ij ij be a TPSM. Then there exists a smooth scalar function ω such that
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(a) The axial Killing field iη leaves ω invariant, i.e. 0l
lη ω = , and

(b) The extrinsic curvature

K
1

(32)ij i j kl
k l2

( ) 
η

η ϵ η ω=

with k
kη η η= is smooth everywhere, in particular on the axis.

(2) Conversely, let g( , )ij be a manifold of positive Yamabe type such that

(a) g( , )ij is AS with hypersurface-orthogonal Killing vector iη .
(b) There is a smooth function ω which satisfies 1(a), and Kij defined by (32) satisfies

1(b).
Then g K( , , )ij ij is a TPSM.

Proof. Simple calculations and application of the Poincaré Lemma, see [15, 16]. □

Remarks.

(1) In contrast to iη which is hypersurface orthogonal (w.r.t. a foliation of 2-surfaces) by
definition of TPSM, the spacetime Killing vector η∼α which arises from the corresponding
data is no longer hypersurface orthogonal (w.r.t. a foliation of 3-surfaces) in general.

(2) The twist potential ω∼ was defined in section 3.1 for all AS spacetimes. If such spacetimes
arise from TPSM generated by the scalar function ω via (32), it can be shown that the
restriction of ω∼ to the initial surface  coincides with ω, provided of course that the
respective additive constants are adapted. This justifies the synonymous notation.

(3) In a coordinate system ( , , )ρ θ ϕ where iη φ= ∂ ∂ and the metric gij is diagonal, TPSM
have Kρφ and Kθφ as only non-vanishing components of Kij.

For a TPSM we easily obtain from (32)

K K
2

. (33)ij
ij2

2

2

Ω ω
η

= = ∣ ∣

This is the key input for the Lichnerowicz equation in the subsequent applications.
From now on we specify the SM g( , )ij to have topology 2 × . For all AS SM and

ID of this topology, we recall from section (3.1) that the angular momentum does not depend
on the selected 2 -surface; one can therefore use the term ‘angular momentum of the SM
(ID)’ instead of 2 .

3.3. The round hypertorus

Here we restrict ourselves to the metric

( )sd
1

d d sin d , (34)2 2 2 2 2

Λ
α θ θ φ= + +

where T[0, ]α ∈ ‘goes around’ the -direction. This metric obviously has O O(2) (3)× as
isometry group. Equation (34) is also the induced metric on a time symmetric slice of the
Nariai spacetime [29]. We now consider possible choices for ω and Ω on this background.

3.3.1. Ω ≡ 0. We first recall from section 2.3 that, on arbitrary backgrounds g( , )ij , the
Lichnerowicz equation (2) reduces for 0Ω ≡ to the Yamabe equation. This is the equation
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which minimizes the Yamabe functional (14), and the corresponding solutions determine data
with constant scalar curvature R 2Λ=∼

. For the present background (34) with R 2Λ= , the
Yamabe problem has been studied thoroughly [9, 21, 32, 33]) due to its simplicity, but also
due to interesting degeneracy properties. We review the results here.

While 10ϕ ϕ= ≡ is of course a solution of (2), there are in addition k positive solutions

jϕ iff T k k(2 , 2 ( 1)]π π∈ + (k j k, 00∈ ⩽ ⩽ ). For j 1⩾ these solutions are periodic in α

with periods P m T j( , )Λ = (see (37) below). The resulting metrics gj ik
4ϕ are known as time-

symmetric data for the Kottler (Schwarzschild–deSitter) spacetime which contain j pairs of
horizons (each pair consisting of a ‘cosmological’ and a ‘black hole’ one). Explicitly, ϕ can
be deterc of the 1-parameter family of time-symmetric Kottler data via

( )s r
r

r md
d

d sin d ( , , ) d d sin . (35)K
2 2

2
2 2 2 2 2 2 2

4

  

⎛
⎝⎜

⎞
⎠⎟σ

θ θ φ α Λ α θ θ= + + = + +∼

ϕ Λ

Here m ∈ , m 1 (3 3 )< , r mr r( 2 3)2 4σ Λ= − − , and the horizons rb and rc are
located at the positive zeros of σ. Obviously, the coordinates are related via

r
r r

d

d
, ( 0) . (36)b

1 2α σ α= = =−

Integrating over the circle and requiring that the period P m( , )Λ fits on the hypertorus gives

P m r T j j( , ) d . (37)
r

r
1 2

b

c

∫Λ σ≔ = ∈−

This way the parameter m acquires a dependence on T j, and therefore the same applies
to jϕ ϕ= .

All such data have Ricci scalar R 2Λ=∼
but the manifolds g( , )j ik

4 ϕ have different

volumes, and the Yamabe constant Y RV Vinf( ) 2 min j j
2 3 2 3

Λ= =∼∼ ∼
is ‘realized’ by the

manifold of minimal volume. For T 2π⩽ , this is necessarily (34) as 10ϕ ϕ= ≡ is the only

solution of (2), while for all T 2π> the metric gj ik
4ϕ with minimal volume always turns out to

be gik1
4ϕ .
Note that the Lichnerowicz equation is independent of α while all solutions except for
1ϕ ≡ do depend on it. In other words, we have here a simple example of ‘symmetry

breaking’. In terms of the stability classification definition 3 we find that both (34) as well as
all Kottler data are unstable, in consistency with propositions 1 and 2. As already mentioned
in section 2.1 the stability classification should be considered as a mathematical tool rather
than interpreted physically.

3.3.2. Ω ¼ const . An exhausitve analysis of the solutions of the Lichnerowicz equation in
this case has recently been obtained by Chruściel and Gicquaud [10]. In particular, it has been
pointed out in theorem 3.1 there that the results of [26] imply that all solutions of (2) are O(3)-
symmetric, i.e. they only depend on α.

The assumption const.Ω = leads to interesting problems regarding the bifurcation
structure of solutions. However, it is incompatible with the t( , )φ -symmetric scheme
described in definition 4 on which we focus in this work. To see this, we integrate (33) with
the present assumptions which gives J4 (sin 2 2 )ω θ θ π= − , J1282 2 3 2Ω Λ π= and via (32)
a second fundamental form whose only non-vanishing component is
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K
J8 sin

. (38)
1 2Λ θ

π
=αφ

This tensor is singular on the axis, however. We therefore consider different choices of ω.

3.3.3. Bowen–York data. The standard setting for Bowen–York data is a flat SM
g K( , , )ij ij with

K
r

J n n
6

, (39)ij kl i
k l

j3 ( )ϵ=

where n i is a radial unit vector, r is the radius on 3 , and the constant angular momentum
vector J Ji ziδ= points in the cartesian z direction [4, 6]. Alternatively this second fundamental
form can be constructed via (32) from the AS function

( )J2 cos 3 cos , (40)3ω θ θ= − −

where J is in fact the standard angular momentum, as follows from (30). We now carry these
definitions over to the SM (34) on 2 × , replacing (39) by

K J n n6 . (41)ij kl i
k l

j
3 2

( )Λ ϵ=

Here the radial unit vector n i is orthogonal to 2 (pointing in the ‘α-direction’ in the
coordinates (34)), while the vector J i now reads J(cos , sin , 0)1 2Λ θ θ . In terms of the
construction described in proposition 5, the generating function still reads as above,
namely (40).

Inserting in (32) shows that the only non-vanishing component of the second
fundamental form is

K J3 sin . (42)1 2 2Λ θ=αφ

This tensor is indeed smooth on the axis, for the same reasons which yield smoothness of the
metric (34).

It now follows from (42) that

K K J b
2

18 sin 8 sin , (43)ij
ij2

2

2
2 3 2 2 2Ω ω

η
Λ θ Λ θ= = ∣ ∣ = =

where we have set b J3 2Λ= .
Inserting (34) and (43) into (2) we are left with

b( ) 1

4

1

4

sin
0, (44)

A B

2

2
2 5

2 2

7
  

⎜ ⎟⎛
⎝

⎞
⎠

⏟
Φ ϕ

Λ
ϕ

α
Δ ϕ ϕ θ

ϕ
= − ∂

∂
− − − − =

ϕ ϕ

where 2Δ is the Laplacian on the round 2 . The corresponding linearized operator around
some ϕ reads

L
A B

b5

4

7 sin
. (45)4

2 2

8

⎛
⎝⎜

⎞
⎠⎟Λ

γ ϕ θ
ϕ

γ= − + + −
ϕ

We first adapt the (non-)existence result theorem 1 to this example. We obtain
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Theorem 3.

(1) If T 2π⩽ and J 0.05Λ ∣ ∣ < , equation (44) has a smooth, positive solution. The same
applies if T 2π⩾ and J T2.01 2Λ ∣ ∣ < .

(2) If J 0.165Λ ∣ ∣ > , equation (44) has no smooth, positive solution.

Proof. From theorem 1 via a lengthy calculation, which usesY T8 ( 2 )4 3 2 3π π= for T 2π⩽
and Y 8 4 3π⩾ for T 2π⩾ in point (1). See [30] for details. □

We now apply Premoselli’s theorem and our results on symmetry and stability to
equations (44) and (45). To obtain a complete picture of the bifurcation structure of the
solutions we have to resort partially to numerical methods. We first determine the ‘principal’
branches of solutions which only depend on θ and which are equatorially symmetric, i.e. we
assume ( )ϕ ϕ θ= and ( ) ( )ϕ θ ϕ π θ= − . Due to the symmetries of the SM, and by virtue of
proposition 2, we know that this class will include the unique stable, minimal branch whose
existence is guaranteed by theorem 2. In order to regularise this branch near b = 0 we now
adopt the substitution b 1 4ψ ϕ= − introduced already in (17). This gives

B
b

B
b1

4

sin
0,

4

sin
0. (46)5

2 2

7
5

2

7
ϕ ϕ θ

ϕ
ψ ψ θ

ψ
+ + = + + =

As to obtaining the diagram on the left one first shows that, near a pole ( 0θ = ) there
is a 1-parameter family of analytic solutions of the form d d( )ϕ θ = +

d O(1 ) 16 ( )4 2 4θ θ− + . One then ‘shoots’ (numerically) such a local solution towards
the equator and adjusts the parameter d such that ϕ θ∂ ∂ vanishes at the equator ( 2π ). This
gives a stable branch emanating from 0ϕ ≡ (green in the online version), and an unstable
branch (red) emanating from 1ϕ ≡ in consistency with theorem 2 and proposition 4.
Moreover, numerics shows that the lowest eigenvalue ς of the linearization ((45) with A 0≡ )
decreases monotonically from 0 to ς Λ= − (see point (3) of proposition 1) along the unstable
branch. An analogous discussion in terms of ψ, which makes use of proposition 3, yields the
diagram on the right.

Figure 1. The stable (green) and the unstable (red) axially symmetric solutions of (46),
(represented by their equatorial values), and the bifurcation points of the secondary
branches for the sample period T 5π= (blue).
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However, the ‘principal’ branches displayed above cannot comprise all solutions—we
recall from section 3.3.1 that even in the special case b = 0 there is the symmetry-breaking
Kottler family of data. We therefore now look for solutions of the form ( , )ϕ α θ , i.e. we still
assume AS. For small b one can in fact infer, via an implicit function-argument, the existence
of unstable ‘secondary’ branches emanating from each Kottler solution. To see where these
branches end up, we rewrite an arbitrary eigenvalue λ of the linearized operator (45) at some
solution ( )ϕ θ on the unstable principal branch in terms of the eigenvalue λθ of the truncated
operator ((45) for A 0≡ ). With a corresponding separation of variables in the eigenfunction

( , ) ( ) ( )μ μ α θ μ α μ θ= = α θ we find

T
j j

2
0, 1, 2 .... (47)

2
2⎜ ⎟⎛

⎝
⎞
⎠

λ
Λ

π λ
Λ

= + =θ

Bifurcation theory (in essence the arguments of proposition 2) now shows that symmetry
breaking can only occur at solutions where the linearized operator has a zero mode. Setting
now 0λ = and using the numerical observation that λθ changes monotonically from 0 at
b b*= to some negative value (depending on T) at b = 0 we find that (47) has in fact k
solutions j k1, 2, .= … when T k k(2 , 2 ( 1)]π π∈ + (figure 1 shows the bifurcation points
corresponding to j = 1 and j = 2 in the case T 5π= ). Further numerical calculations (which
are interesting on their own and will be described in detail separately [5]) now in fact reveal
that from the bifurcation point labelled j ( j k1 ⩽ ⩽ ) on the unstable principal branch, there
emanates a secondary branch of solutions of the form ( , )jϕ α θ which continues till b = 0 and
terminates at the Kottler solution with precisely j pairs of horizons (cosmological and
black hole).

We remark that we cannot rule out the existence of non-axially symmetric solutions. In
particular, theorem 3.1 of [10] has no obvious extension to the present case. However, the
existence of such solutions is unlikely as we do not find corresponding bifurcation points on
any of the known branches.

We summarize the above exposition in the following conjecture. The status of point (3) is
‘truly conjectural’ in the sense just mentioned, while points (1) and (2) are ‘facts’. However,
we wish to reserve the term ‘theorem’ to a forthcoming publication [5] where we hope to
present a complete analytic proof of existence of the solutions, but in any case a detailed
numerical analysis.

Conjecture 1. The smooth, positive solutions of the Lichnerowicz equation (44) have the
following properties:

(1) There exists b* (b* 0.238≈ ) such that for b b(0, *)∈ there is precisely one stable
solution and one unstable solution which only depend on θ and are equatorially
symmetric (the stable and the unstable principal branch). Moreover, for b b*= , there is a
unique marginally stable solution with the same symmetries, while for b b*> there is no
solution. In the limit b 0→ , the stable solutions tend to zero like b1 4.

(2) If T k k(2 , 2 ( 1)]π π∈ + , there exist k values b1...bk, with b b b b* ... 0k1 2> > > > >
such that, from each point on the unstable principal branch corresponding to bj, there
bifurcates a branch of unstable solutions depending only on α and θ (secondary
branches). Each such branch continues till b = 0, where its end point represents the
Kottler solution with j pairs of horizons.

(3) All solutions are AS (i.e. independent of φ).
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We finally note that the maximal value b* 0.238≈ obtained from numerics (see figure 1),
corresponding to J 0.159Λ ∣ ∣ ≈ , significantly exceeds the existence limit given in theorem
3.1, while it comes remarkably close to the non-existence limit, theorem 3.2.

3.4. Kerr–deSitter

The KdS 4-metric reads

s g x x t
a

r

a t
r a

d d d
sin

d d d

sin
d d (48)

K
4
2

2

2 2 2
2

2
2

2

2

2 2 2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

σ
ρ

θ
κ

φ ρ
σ

ρ
χ

θ

χ θ
ρ κ

φ

= = − − + +

+ − +

∼ ∼
μν

μ ν

in terms of ‘Boyer–Lindquist’-coordinates with constants m, a, and a1 /32κ Λ= + , and in
terms of the functions

( )r a
r

mr r a
a

1
3

2 , cos , 1
cos

3
,

(49)

2 2
2

2 2 2 2
2 2⎛

⎝⎜
⎞
⎠⎟σ Λ ρ θ χ Λ θ= + − − = + = +

where σ generalizes the synonymous function in 3.3.1.
The constants m and a satisfy bounds given by the extreme solutions, but also ‘absolute’

bounds in terms of Λ alone, see [1, 7, 8, 17] for a discussion.
The twist scalar of (48) as defined after equation (29) takes the form

J
a

2 cos 3 cos
cos sin

, (50)K K
3

2 4

2

⎛
⎝⎜

⎞
⎠⎟ω θ θ θ θ

ρ
= − − −∼

where

J
ma

(51)K 2κ
=

is the angular momentum as defined in section 3.1. The bounds on m and a entail a bound on
JK, again in terms of the angular momenta JE of the 1-parameter family of the extreme
solutions; the latter satisfy the absolute bound J J 0.170E maxΛ Λ⩽ ≈ saturated for one
particular extreme solution. Interestingly, this value exceeds the non-existence bound of
theorem 3.2 (valid for TPSM solutions of (44) on the round hypertorus (34)).

We now recall how (48) arises from t( , )φ -symmetric data. The slice t = const is maximal
with induced metric

( )s g x x
r

r a ad d d
d d sin

sin d . (52)K ij
K i j2 2

2 2 2

2 2
2 2 2 2 2 2

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥ρ

σ
θ
χ

θ
κ ρ

χ σ θ φ= = + + + −

This metric still fits on a 3-manifold  of topology 2 × [12] which can be seen as in
the Kottler case. As before we restrict ourselves to the region r r r[ , ]b c∈ where 0σ ⩾ , which
is bounded by the black hole- and the cosmological horizon. At 0σ = the metric (52) is
regularised by replacing r by α defined via (36) but with σ from (49). Thus the metric
becomes periodic in α with period
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P m a r( , , ) 2 d . (53)
r

r

b

c 1
2∫Λ σ≔ −

As we are not interested in the complete set of solutions here, we take P equal to the
circumference T of  which leaves us with just one pair of horizons.

From proposition 5, and using remark 2. after this proposition, we can now determine the
second fundamental form Kij

K via K K ω ω= ∣∼ .
With these preparations we now construct new data as follows.

Definition 5. We set out from non-extreme KdS data g K( , , )ij
K

ij
K as SM with angular

momentum JK and with Kij
K generated via (32) from Kω . For some J ∈ we define

J J J( ) K Kω ω= and Kij(J) again via (32).

It follows that K J K J J( )ij ij
K

K= and J K J K J J J( ) ( ) ( )ij
ij

K K
2 2 2 2Ω Ω= = . Note that (51)

does not hold for J JK≠ .
Applying Premoselli’s theorem (theorem 2) and propositions 1, 3 and 4 now yields

Theorem 4. In the setting described in definition 5. We claim

(1) There exists J J* K⩾ such that, for J J(0, *)∈ , equation (2) with J( )Ω has at least two
positive solutions, one of which is minimal and stable. Moreover, for J J*= there is a
unique marginally stable solution, for J slightly below J* there are precisely two
solutions, and for J J*> there is no solution. In the limit J 0→ , the family of minimal,
stable solutions tends to zero like J( )1 4Λ .

(2) If

v Vd . (54)K K
2

∫ Ω Λ<

for KdS data with JK, KΩ and volume VK, it follows that J J* K> .

(3) Inequality (54) (and therefore the conclusion of point (2)) always holds for sufficiently
small JK.

Proof. We first note that Kij(J) is smooth for all J ∈ . Point (1) follows now trivially from
the results stated before the theorem and makes no direct reference to the properties of KdS.
We have stated this point explicitly to illustrate how theorem 2 allows to deduce the existence
of a large family of solutions from a single one. Regarding the case J = 0 we note that, apart
from ϕ ≡ 0, non-trivial solutions definitely exist as well, namely solutions to the Yamabe
problem [27]; however, we have no information about their multiplicity and propagation to
J 0≠ here. To prove (2) we conclude indirectly: assume that J J* K= which means that,
within the 1-parameter family of Kij(J)-tensors generated from J( )ω with J ∈ as in
definition 5, the KdS tensor Kij

K had in fact the maximal angular momentum permitted by
Premoselli’s theorem. Then (2) of that theorem would imply that the KdS data are marginally
stable. However, (54) together with proposition 1 implies strict instability, a contradiction.
(Note that this proposition applies here directly since KdS are ID rather than just a SM.)

For the final point (3) it suffices to show that K
2Ω Λ< for small JK. This is intuitively

clear as K
2Ω is of order JK

2 near JK = 0. To see this in detail, it is useful to rescale all variables
and constants to the dimensionless quantities
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r r a a m m J J¯ , ¯ , ¯ , ¯ , ¯ , ¯ . (55)K KΛ θ θ φ φ Λ Λ Λ= = = = = =

In terms of these variables, the KdS metric and the terms characterizing rotation take the
forms

s sd d̄ , ¯ , ¯ , (56)K K K K K K
2 1 2 1 2 2Λ ω Λ ω Ω ΛΩ= = =− −

where all quantities on the lhs. are functions of m a r, , ,Λ and θ, while all quantities with bars
can be written in terms of the functions r̄, θ̄ and constants m̄ and ā only (and hence do not
depend explicitly on Λ).

Using (33) we now observe that ¯ KΩ can be written as r m a¯ ( ¯, ¯, ¯ , ¯)KΩ θ =
J r m a¯ ¯ ( ¯, ¯, ¯ , ¯)K K,0Ω θ . We first show that ¯

K,0
2Ω is analytic in all arguments. This follows from

the fact the denominator in (33) only vanishes on the axis where, however, it is ‘regularized’
by the zeros of the numerator in the same manner as in the Bowen–York example, and we still
have f¯ sin ¯

K
2 2Ω θ= near the axis with an analytic function f. Next we recall that, for regular

KdS data, m̄ and ā∣ ∣ are bounded from above (by a certain number). Therefore,
r m a¯ ( ¯, ¯, ¯ , ¯)K,0

2Ω θ , being an analytic function on a compact domain, is bounded from above
(by a number). This implies that J¯ ¯ ¯K K K,0Ω Ω= can be made as small as needed by decreasing
J̄K .

We conclude that the KdS metric can indeed be ‘overspun’ in the sense that, for small JK,
one can put more angular momentum than (51) on the background (52). (We remark that our
notion of ‘overspinning’ has nothing to do with attempts of exceeding the angular momentum
limit of extreme Kerr black holes, see [11]). □

We finish with two remarks.

‘Conformally relaxed’ KdS data. Premoselli’s theorem and the previous one imply that for
any KdS seed data with JK small enough, there exist stable, minimal data which are
conformal to these KdS data. We call them ‘conformally relaxed’, (while the unstable KdS
data themselves are ‘conformally excited’). In view of their stability, they will necessarily
(by proposition 2) inherit the axisymmetry of the KdS seed, and they will have the same
angular momentum by virtue of the conformal invariance of (25). These data will very
likely be non-stationary—in any case, again due to their stability, they cannot be a member
of the KdS family with different parameters, as follows from the proof of the above
theorem. In case the data are really dynamic, it would be interesting to determine their time
evolution. Due to axisymmetry, this evolution would preserve the angular momentum.
Therefore, it is not impossible that the resulting spacetime settles down to the same member
of the KdS family one started with.
Data with marginally outer trapped surfaces. Within the conformal method, there has been
considered the problem of finding ID which contain (marginally) outer trapped surfaces
((M)OTS). This was accomplished by imposing suitable boundary conditions on the SM,
first in the asymptotically flat context [14, 28], but recently also for compact manifolds with
boundary [22, 23]. However, this work does not cover the Lichnerowicz equation with the
present sign of the coefficient of 5ϕ . It would be interesting to handle this case as well [34].
This seems to require combining the techniques of the aforementioned papers with those of
Hebey et al [19] and/or Premoselli [31].
In the examples considered in this paper, both the Kottler as well as the KdS family of data
contain minimal surfaces. In the former case, the minimal surfaces are expected to turn into
MOTS when a small angular momentum is added. In the same manner, MOTS should arise
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when the angular momentum of KdS is slightly reduced or increased beyond the stationary
value as described above. It would be interesting to settle this in the generic case.
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