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AN UNUSUAL EIGENVALUE PROBLEM
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We discuss an eigenvalue problem which arises in the studies of asymptotic
stability of a self-similar attractor in the sigma model. This problem is
rather unusual from the viewpoint of the spectral theory of linear operators
and requires special methods to solve it. One of such methods based on
continued fractions is presented in detail and applied to determine the
eigenvalues.

PACS numbers: 02.30.Jr

1. Introduction

Many nonlinear evolution equations have the property that solutions
which are initially smooth become singular after a finite time. The nature
of this phenomenon, usually called blowup, has been a subject of intensive
studies in many fields ranging from fluid dynamics to general relativity. The
problem whether the blowup can occur, and if so, what is its character, is
very difficult for some major evolution equations in physics, such as Navier–
Stokes equations or Einstein’s equations. Thus, in order to get some insight,
it seems useful to study toy models. This paper is concerned with such a
toy model, a nonlinear radial wave equation

utt − urr −
2

r
ur +

sin (2u)

r2
= 0 , (1)

where r is the radial variable and u = u(t, r). Equation (1) describes equiv-
ariant wave maps from the 3 + 1 dimensional Minkowski spacetime into the
three-sphere (see [1] for the derivation). In the physics literature this model
is usually referred to as the sigma model.

(5)
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The central question for equation (1) is whether solutions starting from
smooth initial data

u(0, r) = f(r), ut(0, r) = g(r) (2)

may become singular in future? A hint towards answering this question
comes from the scaling argument. Note that equation (1) is scale invariant:
if u(t, r) is a solution, so is uλ(t, r) = u(t/λ, r/λ). Under this scaling the
conserved energy

E[u] =

∞
∫

0

(

u2
t + u2

r +
2 sin2u

r2

)

r2dr (3)

transforms as a homogenous function of degree one: E[uλ] = λE[u], which
means that equation (1) is supercritical in the language of the theory of
nonlinear partial differential equation. For supercritical equations it is en-
ergetically favorable that solutions shrink to small scales so singularities are
expected to develop from sufficiently large (in a suitable norm) initial data.
Although there are no rigorous results in this respect for equation (1), an
explicit example of a singularity forming from smooth initial data is known.
This example, first pointed out by Shatah [2] and later found in closed form
by Turok and Spergel [3] is provided by the self-similar solution

u(t, r) = U0(ρ) = 2 arctan(ρ), where ρ =
r

T − t
(4)

and T > 0 is a constant1. Since

∂rU0(ρ)
∣

∣

∣

r=0
=

2

T − t
, (5)

the solution U0(ρ) becomes singular at the center when t ր T . By the
finite speed of propagation, one can truncate this solution in space to get
a smooth solution with compactly supported initial data which blows up in
finite time.

In fact, the self-similar solution U0 is not only an explicit example of
singularity formation, but numerical simulations indicate that it appears as
an attractor in the dynamics of generic initial data [1]. We conjectured in [1]
that generically the asymptotic profile of blowup is universally given by U0,
that is

lim
tրT

u(t, (T − t)r) = U0(r) . (6)

1 U0 is the ground state of a countable family of self-similar solutions Un (n =

0, 1, . . . ) [4]. However, all n > 0 solutions are unstable so they do not appear in
the dynamics for generic initial data.
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To prove this conjecture one needs to understand the mechanism responsible
for the process of local convergence to the self-similar solution U0. Such a
mechanism is relatively well-understood for nonlinear diffusion equations
where the global dissipation of energy is responsible for the convergence to
an attractor, however very little is known for conservative wave equations
where the local dissipation of energy is due to dispersion.

In this paper, as the first step towards proving the above conjecture,
we describe in more detail how the limit (6) is attained. To this end, in
Section 2 we consider the problem of linear stability of the solution U0. This
leads to an eigenvalue problem which is rather unusual from the standpoint
of spectral theory of linear operators. In Section 3 we solve this problem
using the method of continued fractions. Finally, in Section 4 we present
the numerical evidence that the deviation of the dynamical solution from the
self-similar attractor is asymptotically well described by the least damped
eigenmode.

2. Formulation of the eigenvalue problem

In order to analyze the problem of linear stability of the self-similar
solution U0 it is convenient to define the new time coordinate τ = − ln(T−t)
and rewrite equation (1) in terms of U(τ, ρ) = u(t, r)

Uττ + Uτ + 2ρ Uρτ − (1 − ρ2)(Uρρ +
2

ρ
Uρ) +

sin(2U)

ρ2
= 0 . (7)

In these variables the problem of finite time blowup in converted into the
problem of asymptotic convergence for τ → ∞ towards the stationary solu-
tion U0(ρ). Following the standard procedure we seek solutions of equation
(7) in the form U(τ, ρ) = U0(ρ) + w(τ, ρ). Neglecting the O(w2) terms we
obtain a linear evolution equation for the perturbation w(τ, ρ)

wττ + wτ + 2ρ wρτ − (1 − ρ2)(wρρ +
2

ρ
wρ) +

2 cos(2U0)

ρ2
w = 0 . (8)

Substituting w(τ, ρ) = eλτv(ρ)/ρ into (8) we get the eigenvalue equation

−(1 − ρ2)v′′ + 2λρv′ + λ(λ − 1)v +
V (ρ)

ρ2
v = 0 , (9)

where

V (ρ) = 2 cos(4 arctan ρ) =
2(1 − 6ρ2 + ρ4)

(1 + ρ2)2
. (10)

We consider equation (9) on the interval 0 ≤ ρ ≤ 1, which corresponds to
the interior of the past light cone of the blowup point (t = T, r = 0). Since
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a solution of the initial value problem for equation (1) starting from smooth
initial data remains smooth for all times t < T , we demand the solution
v(ρ) to be analytic at the both endpoints ρ = 0 (the center) and ρ = 1 (the
past light cone). Such a globally analytic solution of the singular boundary
value problem can exist only for discrete values of the parameter λ, hereafter
called eigenvalues.

A straightforward way to find the eigenvalues would be to use the Frobe-
nius method. The indicial exponents at the regular singular point ρ = 0 are
2 and −1, hence the solution which is analytic at ρ = 0 has the power series
representation

v0(ρ) =
∞
∑

n=0

αnρ2n+2 , α0 6= 0 . (11)

Since there are no complex singularities in the open disk of radius 1 about
ρ = 0, the series (11) is absolutely convergent for 0 ≤ ρ < 1. At the second
regular singular point, ρ = 1, the indicial exponents are 0 and 1 − λ so, as
long as λ is not an integer (below we shall discuss this case separately), the
two linearly independent solutions have the power series representations

v1(ρ) =

∞
∑

n=0

β(1)
n (1 − ρ)n, v2(ρ) =

∞
∑

n=0

β(2)
n (1 − ρ)n+1−λ . (12)

These series are absolutely convergent for 0 < ρ ≤ 1. If λ is not an integer
then only the solution v1(ρ) is analytic at ρ = 1. From the theory of linear
ordinary differential equations we know that the three solutions v0(ρ), v1(ρ),
and v2(ρ) are connected on the interval 0 < ρ < 1 by the linear relation

v0(ρ) = A(λ)v1(ρ) + B(λ)v2(ρ) . (13)

The requirement that the solution which is analytic at ρ = 0 is also analytic
at ρ = 1 serves as the quantization condition for the eigenvalues B(λ) = 0.
Unfortunately, the explicit expressions for the connection coefficients A(λ)
and B(λ) are not known for equations with more than three regular singular
points. In the next section we shall present an indirect method which goes
around this difficulty.

We remark in passing that alternatively the eigenvalues can be computed
numerically using a shooting-to-a-midpoint technique. With this technique
one approximates the solutions v0(ρ) and v1(ρ) by the power series (11)
and (12), truncated at some sufficiently large n, and then computes the
Wronskian of these solutions at a midpoint, ρ = 1/2, say. The zeros of the
Wronskian correspond to the eigenvalues. Although this technique generates
the eigenvalues with reasonable accuracy, it is computationally very costly,
especially for large negative values of λ, because the power series (11) and
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(12) converge very slowly. Note also that shooting towards ρ = 1 fails
completely for large negative λ because the solution v2(ρ) is subdominant
at ρ = 1, that is, it is negligible with respect to the analytic solution v1(ρ).

3. Solution of the eigenvalue problem

In this section we shall solve the eigenvalue problem (9) using a method
which exploits an intimate relationship between recurrence relations and
continued fractions. Although this method is not widely known, it is in fact
quite old and has been applied in the past to determine the bound states of
the hydrogen molecule ion [5] and quasinormal modes of black holes [6].

The key idea is to determine the analyticity properties of the power series
solution v0(ρ) from the asymptotic behavior of the expansion coefficients αn.
In order to implement this idea it is convenient to change the variables

v(ρ) = (2 − x)
λ−1

2 y(x), x =
2ρ2

1 + ρ2
. (14)

In terms of these variables equation (9) takes the form

x2(1−x)(2−x)y′′+x[1−(1+λ)x(2−x)]y′− 1
4 [λ2x(1−x)+9x2−17x+4]y = 0 .

(15)
The reason of making the transformation (14) is twofold. First, the transfor-
mation of the independent variable rearranges the singular points of equa-
tion (9) in such a way that, without changing the points ρ = 0 and ρ = 1,
moves the bothersome singularities at ρ = ±i (which lie on the unit disk
around ρ = 0 and obstruct the analysis of analyticity of the power series
(11) at ρ = 1) to infinity and moves ρ = ∞ to x = 2. Second, by factoring
out the singular behavior at x = 2 the number of terms in the recurrence
relation for the coefficients of the power series solution around x = 0 is re-
duced from four to three. The indicial exponents at x = 0 are 1 and −1/2
so the solution which is analytic at x = 0 has a power series expansion

y0(x) =
∞

∑

n=1

anxn, a1 6= 0 . (16)

Substituting this series into equation (15) we get the three-term recurrence
relation

p2(0)a2 + p1(0)a1 = 0,

p2(n)an+2 + p1(n)an+1 + p0(n)an = 0 , n = 1, 2, . . . (17)
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with the initial conditions a0 = 0 and a1 = 1 (normalization) where

p2(n) = 8n2 + 28n + 20 , (18)

p1(n) = −12n2 − (20 + 8λ)n − λ2 − 8λ + 9 , (19)

p0(n) = 4n2 + 4λn + λ2 − 9 . (20)

The series (16) is absolutely convergent for 0 ≤ x < 1 and in general is
divergent for x > 1. In order to determine the analyticity properties of
the solution y0(x) at x = 1 we need to find the large n behavior of the
expansion coefficients an. The three-term recurrence relation (17) can be
viewed as the second order difference equation so it has two linearly inde-
pendent asymptotic solutions for n → ∞. Following standard methods (see,
for example, [7]) we find

a(1)
n ∼ nλ−2

∞
∑

s=0

c
(1)
s

ns
, and a(2)

n ∼ 2−nn− 3

2

∞
∑

s=0

c
(2)
s

ns
, (21)

where the coefficients c
(1,2)
s can be determined recursively from (17). Thus,

in general the solution of the recurrence relation (17) behaves asymptotically
as

an ∼ c1(λ)a(1)
n + c2(λ)a(2)

n . (22)

If the coefficient c1(λ) is nonzero then

an+1

an

∼
a

(1)
n+1

a
(1)
n

→ 1 as n → ∞ , (23)

hence the power series (16) is divergent for x > 1 (in fact, it has a branch
point singularity at x = 1). On the other hand, if c1(λ) = 0 then

an+1

an

∼
a

(2)
n+1

a
(2)
n

→
1

2
as n → ∞ , (24)

and the power series (16) is absolutely convergent for x < 2, in particular
the solution y0(x) is analytic at x = 1.

The advantage of replacing the quantization condition B(λ) = 0 in the
connection formula (13) by the equivalent condition c1(λ) = 0 follows from
the fact that c1(λ) is the coefficient of the dominant solution in (22), in
contrast to B(λ) which is the coefficient of the subdominant solution in (13).
In the theory of difference equations (recurrence relations) a subdominant
solution, that is a solution which is asymptotically negligible with respect to
any other solution, is called the minimal solution. In contrast to a dominant
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solution, the minimal solution, if it exists, is unique. The condition c1(λ) = 0
is thus equivalent to the requirement that the solution of the recurrence
relation (17) starting with a0 = 0 and a1 = 1 is minimal. In order to find
when this minimal solution exists we shall use now a relationship between
three-term recurrence relations and continued fractions. Let

An =
p1(n)

p2(n)
, Bn =

p0(n)

p2(n)
, rn =

an+1

an

. (25)

Then, we can rewrite (17) as

rn = −
Bn

An + rn+1
, (26)

and applying this formula repeatedly we get the continued fraction repre-
sentation of rn

rn = −
Bn

An−

Bn+1

An+1−

Bn+2

An+2−
. . . (27)

Pincherle’s theorem [7] says that the continued fraction on the right hand
side of equation (27) converges if and only if the recurrence relation (17) has
a minimal solution amin

n and, moreover, in the case of convergence, equation
(27) holds with rn = amin

n+1/a
min
n for each n.

Using Pincherle’s theorem and setting n = 1 in (27) we obtain the eigen-
value equation

a2

a1
=

1

20
(λ2 + 8λ − 9) = −

B1(λ)

A1(λ)−

B2(λ)

A2(λ)−
. . . (28)

The continued fraction in (28), which by Pincherle’s theorem is convergent
for any λ, can be approximated with essentially arbitrary accuracy by down-
ward recursion starting from a sufficiently large n = N and some (arbitrary)
initial value rN . The roots of the transcendental equation (28) are then
found numerically (see Table I).

TABLE I

The first twelve eigenvalues.

n 0 1 2 3 4 5
λn 1 –0.542466 –2 – 3.398382 –4.765079 –6.102295
n 6 7 8 9 10 11
λn –7.297807 –7.765347 –8.853889 –10.1228208 –11.196495 –11.802614

A glance at Table I shows some interesting properties of the spectrum.
First, all the eigenvalues are real. Second, there are no eigenvalues λ > 1.
Third, there are two integer eigenvalues λ = 1 and λ = −2. Below we discuss
these properties in detail.
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Why the eigenvalues are real?

We find this property surprising because we cannot see any a priori reason
which forbids complex eigenvalues. On the contrary, it is easy to deform the
potential V in equation (9), without changing the character of singularities
at the endpoints, in such a way that the resulting eigenvalues are complex.
Thus, the reality of eigenvalues is related to the special form of the potential
V . It remains a puzzle whether this relationship is accidental or there is
something deep to it.

The eigenvalue λ = 1

This eigenvalue is due to the freedom of changing the blowup time T .
To see this, consider a solution U0(

r
T ′−t

) with shifted blowup time. In terms

of the similarity variables τ = − ln(T − t) and ρ = r/(T − t) we have

U0

(

r

T ′ − t

)

= U0

(

ρ

1 + ǫeτ

)

, where ǫ = T ′ − T . (29)

Thus, the perturbation induced by the shift of blowup time has the form

w(ρ, τ) = −ǫeτρU ′
0(ρ) , (30)

and consequently the mode

v(ρ) = ρ2U ′
0(ρ) =

ρ2

1 + ρ2
(31)

solves equation (9) with λ = 1. Since this mode is evidently analytic at both
ρ = 0 and ρ = 1, we conclude that λ = 1 is an eigenvalue. We emphasize that
this positive eigenvalue should not be interpreted as the physical instability
of the solution U0, as it is an artifact of introducing the similarity variables
and does not show up in the dynamics for u(t, r).

Nonexistence of eigenvalues λ > 1

Using the transformation

v(ρ) = (1 − ρ2)−
λ

2 z(ρ) , (32)

we can put equation (9) into a standard Sturm–Liouville form

Az = µz, where A = −(1−ρ2)2
d2

dρ2
+

1 − ρ2

ρ2
V (ρ) , µ = λ(2−λ). (33)
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In the space of functions

D = L2

(

[0, 1],
dρ

(1 − ρ2)2

)

the operator A is self-adjoint so the eigenvalues µ are real. Both endpoints
are of the limit-point type. Near ρ = 0 an admissible (that is, belonging
to D) solution behaves as z(ρ) ∼ ρ. Near ρ = 1 two independent solutions
behave as

z±(ρ) ∼ (1 − ρ)
1

2
(1±

√
1−µ) , (34)

so only the solution z+ with µ < 1 is admissible. Now, we shall show the
operator A has no eigenvalues. To see this, note that the solution with
µ = 1, corresponding to the gauge mode

z(ρ) =
√

1 − ρ2
ρ2

1 + ρ2
, (35)

has no zeros. This implies by a standard theorem for Sturm–Liouville op-
erators that there are no eigenvalues below µ = 1. Since µ = 1 is not an
eigenvalue (because the mode (35) does not belong to D), we conclude that
the operator A has the purely continuous spectrum µ ≥ 1.

What does this fact tell us about the eigenvalues of our problem? Rewrit-
ing (34) in terms of λ we have

z+(ρ) ∼ (1 − ρ)
λ

2 , z−(ρ) ∼ (1 − ρ)1−
λ

2 , (36)

so comparing with (32) we see that only z+ leads to a solution v(ρ) which
is analytic at ρ = 1. For Re(λ) > 1 the solution z+ belongs to D so in this
case there is one-to-one relationship between the eigenvalues of the operator
A and the eigenvalues of our problem. Since the former has no eigenvalues,
we infer that our problem has no eigenvalues with Re(λ) > 1. This result
was obtained previously in [4].

We point out that for Re(λ) < 1 the requirements of square-integrability
and analyticity near ρ = 1 are mutually exclusive so in this case there is no
relationship between the eigenvalues of the operator A and the eigenvalues
of our problem.

The algebraically special eigenvalue λ = −2

If 1−λ = N is a positive integer then the two linearly independent power
series solutions of equation (15) around x = 1 are

y1(x) =
∞
∑

n=0

b(1)
n (1−x)n+N , y2(x) = CNy1(x) ln(1−x)+

∞
∑

n=0

b(2)
n (1−x)n .

(37)
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The solution y1(x), corresponding to the larger indicial exponent, is ana-
lytic at x = 1 but the solution y2(x), corresponding to the smaller indicial
exponent, involves a logarithm in general. However, for N = 3 we have an
exceptional case: the coefficient C3 vanishes and both solutions are analytic
at x = 1. The best way to see this is to solve the recurrence relation for

the coefficients b
(2)
n assuming temporarily that the solution y2 contains no

logarithm. We find

b(2)
n =

P2n−1(λ)

λ(λ + 1)(λ + 3)...(λ + n − 1)
, (38)

where P2n−1(λ) is a polynomial in λ of order 2n − 1. Moreover this poly-
nomial has no integer roots. When 1 − λ = N is a positive integer different

from 3, then the expansion coefficient b
(2)
N does not exist which contradicts

the assumption that y2 contains no logarithm. The only exception is N = 3
because the denominator in (38) has no (λ + 2) term. Thus, for λ = −2 the
singularity at x = 1 is apparent - each solution which is analytic at x = 0
is automatically analytic at x = 1 as well. This proves that λ = −2 is the
eigenvalue.

4. Numerical verification

According to the linear stability analysis presented above the conver-
gence of the solution u(t, r) towards the self-similar attractor U0 should be
described by the formula

u(t, r) = U(τ, ρ) = U0(ρ) +
∑

k=1

cke
λkτvk(ρ)/ρ ∼ U0(ρ) + c1e

λ1τv1(ρ)/ρ

as τ → ∞ , (39)

where vk(ρ)/ρ are the eigenmodes corresponding to the eigenvalues λk and
ck are the expansion coefficients. In order to verify (39) we solved equation
(1) numerically for large initial data leading to blowup, expressed the result
in the similarity variables, and computed the deviation from U0 for t ր T .
The result (see figure 1) shows that, in perfect agreement with the formula
(39), the deviation from U0 is described by the least damped eigenmode
v1. This makes us feel confident that the calculation presented in Section 3
contains no algebraic errors.
We remark that the formula (39) could be used to compute the eigenvalues
numerically directly from the dynamics rather than by solving the eigenvalue
equation. Such a computation was performed by Donninger [8] with the
result which is in rough agreement with Table I (rough, as the dynamical
computation of eigenvalues is by far less accurate than the continued fraction
method).
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Fig. 1. We plot the deviation of the dynamical solution u(t, r) from the self-similar

solution U0 = 2 arctan(ρ) at some moment of time close to the blowup time. The

solid line shows the least damped eigenmode c1(T − t)−λ1v1(ρ)/ρ, where the coef-

ficient c1 is fitted once for all times.
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