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This is a survey of reent studies of singularity formation in solutions of

spherially symmetri Yang�Mills equations in higher dimensions. The

main attention is foused on �ve spae dimensions beause this ase exhibits

interesting similarities with Einstein's equations in the physial dimension,

in partiular the dynamis at the threshold of singularity formation shares

many features (suh as universality, self-similarity, and saling) with ritial

phenomena in gravitational ollapse. The borderline ase of four spae

dimensions is also analysed and the formation of singularities is shown to

be intimately tied to the existene of the instanton solution.

PACS numbers: 11.10.Lm, 04.20.Dw

1. Introdution

One of the most interesting features of many nonlinear evolution equa-

tions is the spontaneous onset of singularities in solutions starting from

perfetly smooth initial data. Suh a phenomenon, usually alled �blowup�,

has been a subjet of intensive studies in many �elds ranging from �uid

dynamis to general relativity. Whether or not the blowup an our for

a given nonlinear evolution equation is the entral mathematial question

whih, from the physial point of view, has a diret bearing on our under-

standing of the limits of validity of the orresponding model. Unfortunately,

this is often a di�ult question. Two famous examples, for whih the answer

is not known, are the Navier�Stokes equation and the Einstein equations.

One the existene of blowup is established for a partiular equation, many

�
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further questions ome up, suh as: When and where does the blowup o-

ur? What is the harater of blowup and is it universal? Can a solution be

ontinued past the singularity?

In this paper we onsider these questions for the Yang�Mills (YM) equa-

tions in higher dimensions. In the physial 3 + 1 dimensions, where the

YM equations are the basi equations of gauge theories desribing the weak

and strong interations of elementary partiles, it is known that no singu-

larities an form. This was shown by Eardley and Monrief [1℄ who proved

that solutions starting from smooth initial data remain smooth for all future

times. The motivation for studying the YM equations in unphysial D + 1

dimensions for D > 3 is twofold (and unrelated to the latest fashion of do-

ing physis in extra dimensions). From the mathematial point of view, it

is the obvious thing to ask how the property of global regularity depends

on the dimension of the underlying spaetime and whether singularities an

form in D + 1 dimensions for D > 3. However, there is also a less evident

physial reason whih is motivated by the hope that by understanding the

problem of singularity formation for the YM equations one might get insight

into the analogous, but muh more di�ult, problem in general relativity.

From this viewpoint � in whih the YM equations are onsidered as a toy

model for the Einstein equations � it is essential that these two equations

belong to the same ritiality lass. Let us reall that the ritiality lass

is de�ned as the degree � in the homogeneous saling of energy E ! �

�

E

under dilations x ! x=�. The lassi�ation of equations into subritial

(� < 0), ritial (� = 0), and superritial (� > 0) is a basis of the heuristi

meta-priniple aording to whih subritial equations are globally regular,

while superritial equations may develop singularities for some (large) ini-

tial data [2℄. For the YM equations we have �

YM

= D � 4, while for the

Einstein equations �

E

= D�2. Therefore, the YM equations in D = 5 have

the same ritiality, � = 1, as the Einstein equations in the physial dimen-

sion. Another way of seeing this is to note that in D = 5 the dimension of

the YM oupling onstant [e

2

℄ = M

�1

L

D�4

(in  = 1 units) is the same as

the dimension of the physial Newton's onstant [G℄ = M

�1

L.

For the reason just explained, the main body of this paper is foused on

the lowest super-ritial dimension D = 5. In Setion 3 we show that in

this ase there exists a ountable family of regular (by regularity we mean

analytiity inside the future light one) spherially symmetri self-similar

solutions labelled by a nonnegative integer n (a nodal number). Next, using

linear stability analysis we show in Setion 4 that the number of unstable

modes around a given solution is equal to its nodal number. The role of self-

similar solutions in the dynamial evolution is studied in Setion 5, where

we show that: (i) the n = 0 solution determines a universal asymptotis

of singularity formation for solutions starting from generi �large� initial
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data; (ii) the n = 1 solution plays the role of a ritial solution sitting

at the threshold of singularity formation. The latter is in many respets

similar to the ritial behaviour at the threshold of blak hole formation in

gravitational ollapse. In both ases the threshold of singularity (or blak

hole) formation an be identi�ed with the odimension-one stable manifold

of a self-similar solution with exatly one unstable mode. These similarities

are disussed in detail in Setion 6.

We onsider also the Cauhy problem for the YM equations in D = 4.

Despite intensive studies of this borderline ase, the problem of global ex-

istene is open. In Setion 7 we desribe numerial simulations whih, in

ombination with analyti results, strongly suggest that large-energy solu-

tions do blow up. We show that the proess of singularity formation is due to

onentration of energy and proeeds via adiabati shrinking of the instan-

ton solution. At the end, a reent attempt of determining the asymptoti

rate of shrinking is skethed.

We remark that there are lose parallels between YM equations in D+1

dimensions and wave maps in (D � 2) + 1 dimensions [3℄. Indeed, many of

the phenomena desribed here are mirrored for the equivariant wave maps

into spheres in three [4,5℄ and two [6℄ spatial dimensions.

Setions 5 and 7 of this survey are based on joint work with Tabor [7℄.

The material of Setions 3 and 4 is new.

2. Setup

We onsider Yang�Mills (YM) �elds in D + 1 dimensional Minkowski

spaetime (in the following Latin and Greek indies take the values 1; 2; : : : ;D

and 0; 1; 2; : : : ;D respetively). The gauge potential A

�

is a one-form with

values in the Lie algebra g of a ompat Lie group G. In terms of the

urvature F

��

= �

�

A

�

� �

�

A

�

+ [A

�

; A

�

℄ the ation is

S =

1

e

2

Z

Tr (F

��

F

��

)d

D

x dt ; (1)

where e is the gauge oupling onstant. Hereafter we set e = 1. The YM

equations derived from (1) are

�

�

F

��

+ [A

�

; F

��

℄ = 0 : (2)

As written, this equation is underdetermined beause of the gauge invariane

A

�

! U

�1

A

�

U + U

�1

�

�

U ; (3)

where U is an arbitrary funtion with values in G. In order to orretly

formulate the Cauhy problem for equation (2), one must impose additional
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onditions whih �x this gauge ambiguity. We shall not disuss this issue

here beause in the spherially symmetri ansatz, to whih this paper is

restrited, the gauge is �xed automatially.

For simpliity, we take here G = SO(D) so the elements of SO(D) an

be onsidered as skew-symmetri D�D matries and the Lie braket is the

usual ommutator. Assuming the spherially symmetri ansatz [8℄

A

ij

�

(x) =

�

Æ

i

�

x

j

� Æ

j

�

x

i

�

1� w(t; r)

r

2

; (4)

the YM equations redue to the salar semilinear wave equation for the

magneti potential w(t; r)

�w

tt

+�

(D�2)

w +

D � 2

r

2

w(1 � w

2

) = 0; (5)

where �

(D�2)

= �

2

r

+

D�3

r

�

r

is the radial Laplaian in D � 2 dimensions.

The entral question for equation (5) is: an solutions starting from smooth

initial data

w(0; r) = f(r) ; w

t

(0; r) = g(r) (6)

beome singular in future? As mentioned above, in the physial D = 3

dimensions Eardley and Monrief answered this question in the negative [1℄.

However, simple heuristi arguments indiate that the property of global

regularity enjoyed by the YM equations in D = 3 might break down in

higher dimensions. In order to see why the global behaviour of solutions is

expeted to depend ritially on the dimension D, we reall two basi fats.

The �rst fat is the onservation of (positive de�nite) energy

E =

Z

R

D

Tr

�

F

2

0i

+ F

2

ij

�

d

D

x = (D)

1

Z

0

�

w

2

t

+ w

2

r

+

D � 2

2r

2

(1� w

2

)

2

�

r

D�3

dr;

(7)

where the oe�ient (D) = (D � 1)vol(S

D�1

) follows from the integration

over the angles and taking the trae. The seond fat is sale-invariane of

the YM equations: if A

�

(x) is a solution of (2), so is

~

A

�

(x) = �

�1

A

�

(x=�),

or equivalently, if w(t; r) is a solution of (5), so is ~w(t; r) = w(t=�; r=�). Un-

der this saling the energy sales as

~

E = �

D�4

E, hene the YM equations

are subritial for D � 3, ritial for D = 4, and superritial for D � 5. In

the subritial ase, shrinking of solutions to arbitrarily small sales osts

in�nite amount of energy, so it is forbidden by energy onservation. In other

words, transfer of energy to arbitrarily high frequenies is impossible and

onsequently the Cauhy problem should be well posed in the energy norm.

This important fat was proved in D = 3 by Klainerman and Mahedon [9℄,
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who thereby strengthened the result of Eardley and Monrief. In the su-

perritial ase, shrinking of solutions might be energetially favourable and

onsequently singularities are antiipated. In fat, we shall show below that

singularities do form already in the lowest superritial dimension D = 5.

In the ritial dimension D = 4 the problem of singularity formation is more

subtle beause the saling argument is inonlusive.

3. Self-similar solutions in D = 5

In order to set the stage for the disussion of singularity formation we �rst

need to analyse in detail the struture of self-similar solutions of equation

(5). As we shall see, these solutions play a key role in understanding the

nature of blowup. By de�nition, self-similar solutions are invariant under

dilations w(t; r)! w(t=�; r=�), hene they have the form

w(t; r) = W (�) ; � =

r

T � t

; (8)

where a positive onstant T , learly allowed by the time translation invari-

ane, is introdued for later onveniene. Note that for a self-similar solution

we have

�

2

r

W (�)

�

�

�

r=0

=

1

(T � t)

2

W

00

(0) ; (9)

hene the solution beomes singular at the entre when t ! T (there is no

blowup in the �rst derivative beause regularity demands that W

0

(0) = 0).

Thus, eah self-similar solution W (�) provides an expliit example of a sin-

gularity developing in �nite time from smooth initial data.

Substituting the ansatz (8) into (5) one obtains the ordinary di�erential

equation

W

00

+

�

D � 3

�

+

(D � 5)�

1� �

2

�

W

0

+

D � 2

�

2

(1� �

2

)

W (1�W

2

) = 0 : (10)

As explained in the introdution, beause of the expeted onnetions with

the Einstein equations, we are mainly interested in the lowest super-ritial

dimension D = 5. In this ase equation (10) redues to

W

00

+

2

�

W

0

+

3

�

2

(1� �

2

)

W (1�W

2

) = 0 : (11)

Although the similarity oordinate � is natural in the disussion of singu-

larity formation, it has a disadvantage of not overing the region t > T , in

partiular it does not extend to the future light one of the point (T; 0).

For this reason we de�ne a new oordinate x = 1=� whih overs the whole
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spaetime: the past and the future light ones are loated at x = 1 and

x = �1, respetively; while the entre r = 0 orresponds to x = 1 (for

t < T ) and x = �1 (for t > T ). In terms of x equation (11) beomes

(x

2

� 1)W

00

+ 3W (1�W

2

) = 0 : (12)

We �rst onsider this equation inside the past light one, that is for 1 � x <1

and impose the boundary onditions

W (1) = 0 and W (1) = �1 ; (13)

whih follow from the demand of smoothness at the endpoints. As we shall

see below, one a solution to this boundary value problem is onstruted,

its extension beyond the past light one an be easily done.

To show that equation (12) admits solutions satisfying (13) we shall

employ a shooting tehnique. The main idea of this method is to replae

the boundary value problem by the initial value problem with initial data

imposed at one of the endpoints and then adjusting these data so that the

solution hits the desired boundary value at the seond endpoint. In the ase

at hand we shall shoot from x = 1 towards in�nity. Substituting a formal

power series expansion about x = 1 into (12) one �nds the asymptoti

behaviour

W (x) = a(x� 1)�

3a

4

(x� 1)

2

+O

�

(x� 1)

3

�

; (14)

where a is a free parameter determining uniquely the whole series. In the

following a solution of equation (12) starting at x = 1 with the asymptoti

behaviour (14) will be alled an a-orbit. Without loss of generality we may

assume that a � 0. We laim that there is a ountable set of values fa

n

g for

whih the a

n

-orbits exist for all x � 1 and have the desired asymptotis at

in�nity (suh orbits will be alled onneting). The proof onsists of several

steps.

Step 1 (Loal existene). First, we need to show that a-orbits do in fat

exist, that is, the series (14) has a nonzero radius of onvergene. Sine the

point x = 1 is singular, this fat does not follow from standard theorems.

Fortunately, in [10℄ Breitelohner, Forgás, and Maison have derived the fol-

lowing result onerning the behaviour of solutions of a system of ordinary

di�erential equations near a singular point:

Theorem [BFM℄. Consider a system of �rst order di�erential equations for

n+m funtions u = (u

1

; : : : ; u

n

) and v = (v

1

; : : : ; v

m

)

y

du

i

dy

= y

�

i

f

i

(y; u; v); y

dv

i

dy

= ��

i

v

i

+ y

�

i

g

i

(y; u; v); (15)
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where onstants �

i

> 0 and integers �

i

; �

i

� 1 and let C be an open subset

of R

n

suh that the funtions f and g are analyti in the neighbourhood of

y = 0; u = ; v = 0 for all  2 C. Then there exists an n-parameter family

of solutions of the system (15) suh that

u

i

(y) = 

i

+O(y

�

i

); v

i

(y) = O(y

�

i

); (16)

where u

i

(y) and v

i

(y) are de�ned for all  2 C; jyj < y

0

() and are analyti

in y and .

We shall make use of this theorem to prove the loal existene of a-orbits.

In order to put equation (12) into the form (16) we de�ne the variables

y = x� 1; u(y) = W

0

; v(y) =

W

x� 1

�W

0

; (17)

and get

yv

0

= �v + yf; yu

0

= yf; f =

3(u+ v)

�

1� y

2

(u+ v)

2

�

2 + y

: (18)

Sine the funtion f(y; u; v) is analyti near y = 0 for any u and v, aording

to the BFM theorem, there exists a one-parameter family of loal solutions

suh that

u(y) = a+O(y); v(y) = O(y) : (19)

Transforming (19) bak to the original variables we obtain the behaviour of

a-orbits.

Step 2 (A priori global behaviour). It follows immediately from (12) that

for x > 1 a solution annot have a maximum (resp. minimum) for W > 1

(resp. W < �1). Thus, one the solution leaves the strip jW j < 1, it annot

reenter it (atually, suh a solution beomes singular for a �nite x). It is

also lear that as long as jW j < 1 the solution annot go singular. To derive

the asymptotis at in�nity of a-orbits that stay in the strip jW j < 1 we shall

make use of the following funtional

Q(x) =

1

2

(x

2

� 1)W

0

2

�

3

4

(1�W

2

)

2

: (20)

For solutions of equation (12) we have

Q

0

(x) = xW

0

2

; (21)

so Q(x) is monotone inreasing. Now, we shall show that solutions satisfying

jW j < 1 for all x � 1 tend to W = �1 as x ! 1. To see this, �rst notie
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that for suh solutions Q must be negative beause if Q(x

0

) > 0 for some

x

0

> 1 then jW

0

j is stritly positive for x > x

0

so the solution must leave

the strip jW j < 1 in �nite time. Sine Q

0

� 0 and Q � 0, it follows that

Q has a nonpositive limit at in�nity whih in turn implies by (21) that

lim

x!1

xW

0

= 0 and by (20) that lim

x!1

W exists. By L'H�pital's rule we

have lim

x!1

x

2

W

00

= 0 and using (12) again, we get that lim

x!1

W equals

�1 or 0. The latter is impossible beause then Q(1) = �3=4 is a global

minimum ontraditing the fat that Q inreases. Thus, W (1) = �1.

Step 3 (i) (Behaviour of a-orbits for small a). Resaling w(x) = W (x)=a

we get

(x

2

� 1)w

00

+ 3w(1 � a

2

w

2

) = 0; w(1) = 0; w

0

(1) = 1: (22)

As a! 0, the solutions of this equation tend uniformly on ompat intervals

to the solution of the limiting equation

(x

2

� 1)w

00

+ 3w = 0 (23)

with the same initial ondition. This equation an be solved expliitly but

for the purpose of the argument it su�es to notie that its solution, all it

w

L

(x), is osillating at in�nity. Sine W (x; a) � aw

L

(x) up to an arbitrarily

large x if a is su�iently small, it follows that the number of zeros of the

solution W (x; a) tends to in�nity as a! 0.

(ii) (Behaviour of a-orbits for large a.) We resale the variables, setting

y = a(x� 1), �w(y) = W (x) to get

�y(y + 2a) �w

00

+ 3 �w(1� �w

2

) = 0; �w(0) = 0; �w

0

(0) = 1: (24)

As a ! 1, the solutions of this equation tend uniformly on ompat in-

tervals to the solution �w(y) = y of the limiting equation �w

00

= 0. Thus,

W (x; a) � a(x � 1) for large a and therefore the a-orbit rosses W = 1 for

a �nite x.

Step 4 (Shooting argument). We de�ne the set

A

0

= fa jW (x; a) stritly inreases up to some x

0

where W (x

0

; a) = 1g:

(25)

We know from Step 3 that the set A

0

is nonempty (beause the a-orbits with

large a belong to it) and bounded below (beause the a-orbits with small a

do not belong to it). Thus a

0

= inf A

0

exists. The solution W (x; a

0

) annot

ross the line W = 1 at a �nite x beause the same would be true for nearby

solutions, violating the de�nition of a

0

. Thus, 0 � W (x; a

0

) < 1 for all x

and hene, by Step 2, lim

x!1

W (x; a

0

) = 1. This ompletes the proof of

existene of the nodeless self-similar solution W

0

(x)

def

= W (x; a

0

).
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Next, let us onsider the solution with a = a

0

�" for small " > 0. By the

de�nition of a

0

there must be a point x

0

where this solution attains a positive

loal maximum W (x

0

) < 1 and sine no minima are possible for 0 < W < 1,

it follows that there must be a point x

1

> x

0

where W (x

1

; b) = 0. We shall

show that Q(x

1

; a) > 0 provided that " is su�iently small. As argued

above this would imply that the solution W (x; a) leaves the strip jW j < 1

via W = �1. From (21) we have

Q(x

1

)�Q(x

0

) =

x

1

Z

x

0

xW

0

2

dx = �

W (x

0

)

Z

0

xW

0

dW: (26)

In order to estimate the last integral note that for x > x

0

Q(x)�Q(x

0

) =

1

2

(x

2

� 1)W

0

2

�

3

4

(1�W

2

)

2

+

3

4

(1�W

2

(x

0

))

2

> 0; (27)

so xjW

0

j >

q

3

2

p

(1�W

2

)

2

� (1�W

2

(x

0

))

2

. Substituting this into (26)

one gets

Q(x

1

) > �

3

4

�

1�W

2

(x

0

)

�

2

+

r

3

2

W (x

0

)

Z

0

p

(1�W

2

)

2

� (1�W

2

(x

0

))

2

dW:

(28)

The right hand side of this inequality is equal to

p

2=3 for W (x

0

) = 1

so, by ontinuity, it remains stritly positive for W (x

0

) near 1. By taking a

su�iently small " we an haveW (x

0

) arbitrarily lose to 1, hene Q(x

1

) > 0

whih proves that a-orbits with a = a

0

�" have exatly one zero. This means

that the set A

1

= fa jW (x; a) inreases up to some x

0

where it attains a

positive loal maximum W (x

0

) < 1 and then dereases monotonially up

to some x

1

where W (x

1

) = �1g is nonempty. Let a

1

= inf A

1

. By Step 3,

a

1

exists and is stritly positive. Using the same argument as above we

onlude that the a

1

-orbit must stay in the region jW j < 1 for all x, hene

lim

x!1

W (x; a

1

) = �1. This ompletes the proof of existene of the self-

similar solution W

1

(x)

def

= W (x; a

1

) with exatly one zero.

The subsequent onneting orbits are obtained by indution. We on-

lude that there exists a ountable family of self-similar solutions W

n

(x)

indexed by the integer n = 0; 1; : : : n whih ounts the number of zeros for

x > 1.

Remark. Sine the sequene fa

n

g is dereasing and bounded below by zero,

it has a nonnegative limit lim

n!1

a

n

= a

�

� 0. If a

�

> 0, then the a

�

-orbit

annot leave the region jW j < 1 for a �nite x (beause the set of suh orbits
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is learly open) hene it must be a onneting orbit with some �nite number

of zeros. But this ontradits the fat that the number of zeros of a

n

-orbits

inreases with n. Hene, a

�

= 0. This implies that for any �nite x, W

n

(x)

goes to zero when n!1.

We remark that the existene of the solution W

0

was �rst shown by

Cazenave, Shatah, and Tahvildar-Zadeh [3℄ via a variational method.

The shooting tehnique is not only a powerful analytial tool; it is also an

e�ient numerial method of solving two-point boundary value problems.

The numerial results produed by this method are shown in Table I and

�gure 1.

TABLE I

The shooting parameters of solutions W

n

for n � 5.

n 0 1 2 3 4 5

a

n

1.25 0.4813158 0.1864517 0.0722966 0.02803703 0.01087315

-1

-0.5

0

0.5

1

1 10 100 1000 10000

w

x

n=0
n=1
n=2
n=3

Fig. 1. The �rst four self-similar solutions W

n

(x).

Surprisingly, it turned out that a

0

= 5=4 (with very good auray).

This was a hint that the solution W

0

has a simple losed form. Indeed,

playing with the power series expansion (14) we found that

W

0

(x) =

x

2

� 1

x

2

+

3

5

: (29)
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Below we show an amusing alulation by Maple whih helped us in

�nding this formula.

> restart;

> with(DEtools):

> with(numapprox):

> ode:=(x�2-1)*diff(w(x),x$ 2)+3*w(x)*(1-w(x)�2)=0;

ode := (x

2

� 1)

�

�

2

�x

2

w(x)

�

+ 3w(x) (1 � w(x)

2

) = 0

> i:=w(1)=0,D(w)(1)=5/4;

i := w(1) = 0; D(w)(1) =

5

4

> sol:=dsolve({ode,i},w(x));

sol :=

> sol_formal:=rhs(dsolve({ode,i},w(x),type=series));

sol_formal :=

5

4

(x�1)�

15

16

(x�1)

2

+

25

64

(x�1)

3

+

25

256

(x�1)

4

�

375

1024

(x�1)

5

+O((x�1)

6

)

> pade_sol:=pade(sol_formal,x=1,[2,2℄);

pade_sol :=

5

8

(x� 1)

2

+

5

4

x�

5

4

�

1

4

+

5

4

x+

5

8

(x� 1)

2

> sol:=simplify(pade_sol);

sol := 5

x

2

� 1

3 + 5x

2

> subs(w(x)=sol,ode);

(x

2

� 1)

�

�

2

�x

2

�

5

x

2

� 1

3 + 5x

2

��

+ 15

(x

2

� 1)

�

1� 25

(x

2

� 1)

2

(3 + 5x

2

)

2

�

3 + 5x

2

= 0

> simplify(%);

0 = 0 :



1904 P. Bizo«

So far our analysis of self-similar solutions was restrited to the interior

of the past light one of the singularity. To show that the solutions W

n

represent genuine naked singularities, we need to extend them to the future

light one, that is to x = �1. Fortunately, suh an extension reates no

problem beause an a-orbit shot bakwards from x = 1 annot go singular

before reahing x = �1. This follows immediately from (12) by observing

that, in the interval �1 < x < 1,W (x) is onave down (resp. up) forW > 1

(resp. W < �1), hene W (x) remains bounded as x! �1

+

. Moreover, the

funtion Q(x) is negative and dereasing near x = �1, thus lim

x!�1

+ Q(x)

exists whih implies in turn that  = lim

x!�1

+
W (x) exists. Having that,

the standard asymptoti analysis gives the following leading order behaviour

for x! �1

+

W (x) � +

3

2

(1� 

2

)(x+ 1) ln(x+ 1) : (30)

The singular logarithmi term in (30) an be eliminated by �ne-tuning the

shooting parameter a, however this is not expeted to happen for the solu-

tions W

n

(x) beause in their onstrution the freedom of adjusting a was

already used to tune away the singular behaviour for x > 1. We onlude

that the self-similar solutions W

n

are C

0

at the future light one and are

analyti everywhere below it. The only (somewhat surprising) exeption is

the solution W

0

whih is analyti in the entire spaetime.

4. Linear stability of self-similar solutions

In this setion we study the linear stability of self-similar solutions W

n

.

This analysis is essential in determining the role of self-similar solutions in

dynamis. We restrit attention to the interior of the past light one of the

point (T; 0) and de�ne the new time oordinate s = � ln

p

(T � t)

2

� r

2

.

Note that s ! 1 when t ! T , and the lines of onstant s are orthogonal

to the rays of onstant x. In terms of s and x, equation (5) beomes (for

D = 5)

�

e

2s

x

2

� 1

(e

�2s

w

s

)

s

+ (x

2

� 1)w

xx

+ 3w(1 � w

2

) = 0 : (31)

Of ourse, this equation redues to (12) if w does not depend on s. In order

to determine the stability of self-similar solutions W

n

we seek solutions of

(31) in the form w(s; x) = W

n

(x) + v(s; x). Negleting the O(v

2

) terms we

obtain the linear evolution equation for the perturbation v(s; x)

�

e

2s

x

2

� 1

(e

�2s

v

s

)

s

+ (x

2

� 1)v

xx

+ 3(1� 3W

2

n

)v = 0 : (32)
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Substituting v(s; x) = e

(�+1)s

p

x

2

� 1 u(x) into (32) we get the eigenvalue

problem in the standard Sturm�Liouville form

�

d

dx

�

(x

2

� 1)

du

dx

�

� 3(1� 3W

2

n

)u =

�

x

2

� 1

u ; (33)

where � = ��

2

. Using the variable � =

1

2

ln(

x�1

x+1

) ranging from zero to

in�nity we transform (33) into the radial Shrödinger equation

�

d

2

u

d�

2

+ V

n

u = �u ; V

n

= �

3(1� 3W

2

n

)

sinh

2

�

: (34)

The potential V

n

(�) has a typial �quantum mehanial� shape (see �gure 2)

with the asymptotis

V

n

(�) �

�

6=�

2

for �! 0 ;

�12 exp(�2�) for �!1 :

(35)

Note that the potential an be expressed in the form V

n

(�) = l(l + 1)=�

2

+

V

reg

n

(�) with l = 2, where the regular part V

reg

n

(�) is everywhere negative

and V

reg

n

(0)! �1 as n!1.
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Fig. 2. The potential for the perturbations around the self-similar solution W

1

.

The single bound state with energy � = �16 is indiated.

Both endpoints � = 0 and � = 1 are of the limit-point type, that is,

exatly one solution near eah point is square-integrable (admissible). Near

� = 0 the admissible solutions behave as u(�) � �

3

. For � ! 1 and � < 0

the admissible solutions behave as u(�) � e

���

(reall that � =

p

��). All

� � 0 belong to the ontinuous spetrum.
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Let u

n

k

(resp. �

n

k

) denote the kth eigenfuntion (resp. eigenvalue) about

the solution W

n

. The numerially generated spetra are shown in Table II.

TABLE II

The eigenvalues of the perturbations about the �rst �ve solutions W

n

obtained nu-

merially. The pseudo-eigenvalue � = 0 is also inluded. The last row orrespond-

ing to n = 1 was obtained by solving numerially the transendental equation

(43).

n �

n

0

�

n

1

�

n

2

�

n

3

�

n

4

0 0

1 0 4

2 0 4 27.407

3 0 4 27.379 182.49

4 0 4 27.374 182.18 1214.5

. . . . . . . . . . . . . . . . . .

1 0 4 27.37319 182.1202 1210.917

We point out that although � = 0 is not a genuine eigenvalue, it is dis-

tinguished from the stritly positive part of the ontinuous spetrum by

the fat that the orresponding non-square-integrable pseudo-eigenfuntion,

alled the zero mode, is subdominant at in�nity. The existene of the zero

mode is due to the time translation symmetry, or in other words, the freedom

of shifting the blowup time T in (8). To see this, onsider the self-similar

solution with a shifted blowup time W

n

((T

0

� t)=r), where T

0

= T + ".

In terms of the original similarity variables s = � ln

p

(T � t)

2

� r

2

and

x = (T � t)=r, we have

W

n

�

T

0

� t

r

�

= W

n

(x+"e

s

p

x

2

� 1) = W

n

(x)+"e

s

p

x

2

� 1 W

0

n

(x)+O("

2

) ;

(36)

hene the perturbation generated by shifting the blowup time orresponds

to � = 0 and has the form

u

n

0

=

p

x

2

� 1 W

0

n

(x) = sinh

2

� W

0

n

(�): (37)

An alternative way of deriving this result is to take (sinh

2

� W

0

)

0

+ 3W (1�

W

2

) = 0, whih is (12) reexpressed in terms of �, di�erentiate it and ompare

with (34).

Sine by onstrution the solution W

n

(�) has n extrema, it follows from

(37) that the zero mode u

n

0

(�) has n nodes. This implies, by the standard

result from Sturm�Liouville theory, that the potential V

n

has exatly n neg-

ative eigenvalues, in agreement with the numerial results shown in Table II.
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We onlude that the self-similar solution W

n

has exatly n unstable modes

(apart from the unphysial zero mode). In partiular, the fundamental so-

lution W

0

is linearly stable, whih makes it a andidate for the attrator.

The rest of this setion is a digression onerning a striking regularity

whih an aute reader might have already notied in Table II. Namely, the

third olumn of Table II indiates that for eah n > 0 the �rst eigenvalue

below the ontinuous spetrum �

n

1

= �(�

n

1

)

2

is equal to �16 (with the

numerial auray of ten deimal plaes)! This puzzling numerial fat is

alling for an explanation. Clearly, it has something to do with the partiular

form of the nonlinearity sine, for instane, the analogous problem for self-

similar wave maps from 3 + 1 dimensional Minkowski spaetime into the 3-

sphere does not have this property [4℄. We suspet that the problem has some

hidden symmetry, yet we annot exlude a possibility that the numeris is

misleading and the eigenvalues �

n

1

are not preisely equal but their splitting

is beyond the numerial resolution. Some insight into this puzzle an be

gained by analysing the limiting ase n ! 1. Reall that W

n

(�) tends to

zero for any � > 0 as n ! 1, hene the sequene of potentials V

n

has the

following nonuniform limit

lim

n!1

V

n

(�) = V

1

(�) = �

3

sinh

2

�

: (38)

For the limiting potential V

1

the Shrödinger equation (34) an be solved

exatly. The solution that is admissible at in�nity (whih as before is the

limit-point) is given by the assoiated Legendre funtion of the �rst kind

u(�) = P

�

�

(oth �); � = �

1

2

+ i

p

11

2

: (39)

Here � is one of the roots of �(� + 1) = �3; the seond root gives the

same solution beause P

�

�1=2+i�

(x) with real � is real and P

�

�1=2+i�

(x) =

P

�

�1=2�i�

(x).

As �! 0, the solution (39) behaves as

u(�) / �

1

2

sin

 

p

11

2

ln�+ Æ(�)

!

; (40)

so it is always admissible, independently of �. This means that � = 0 is

the limit-irle point and, therefore, in order to have a well-de�ned self-

adjoint problem we need to impose an additional boundary ondition. In

the language of spetral theory suh a ondition is alled a self-adjoint ex-

tension. The ontinuous part of the spetrum is the same for all self-adjoint

extensions but the eigenvalues do depend on the hoie. In our ase the
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self-adjoint extension amounts to �xing Æ(�) � the phase of osillations of

the eigenfuntions for �! 0. The natural hoie is to require that the eigen-

funtions osillate with the same phase as the zero mode, that is Æ(�) = Æ(0),

or equivalently

lim

�!0

n

P

0

�

(oth �)u

0

(�)� P

0

�

0

(oth �)u(�)

o

= 0: (41)

Note that under this ondition the following diagram ommutes

V

n

f�

n

k

g

V

1

f�

1

k

g

-

?

p

p

p

p

p

p

p

p

p

p

?

-

Substituting (39) into (41) and using the asymptoti expansion (for real �)

P

�

�1=2+i�

(oth �) �

2

i�

� (i�)

p

2� � (1=2 + i� � �)

�

1=2+i�

+ .. for �! 0; (42)

we obtain the quantisation ondition for the eigenvalues

arg

(

�

 

1

2

� i

p

11

2

!

�

 

1

2

+ i

p

11

2

+ �

k

!)

= k�; k 2N : (43)

This transendental equation has in�nitely many roots whih for k � 2

an be obtained only numerially (see the last row in Table II). However,

for k = 1 the exat solution is �

1

= 4 beause (aidentally?) � (1=2 +

i

p

11=2 + 4) = �45 � (1=2 + i

p

11=2), as an be readily veri�ed using four

times the identity � (z+1) = z� (z). Thus, we showed that the least negative

eigenvalue of the limiting potential is equal to �16. Although this analysis

does not resolve the original puzzle why all �

n

1

are equal to 4, it shows at

least that 4 is the aumulation point of this sequene.

The asymptoti distribution of eigenvalues for k ! 1 an be derived

from (43) by using the formula for the asymptoti behaviour of the gamma

funtion for large z

� (� + z) �

p

2� e

(�+z�1=2) ln z�z

for jzj ! 1; (44)

whih yields

arg

(

�

 

1

2

+ i

p

11

2

+ �

!)

�

p

11

2

ln� for �!1: (45)
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Applying this to (43) one gets

�

k+1

�

k

� e

2�

p

11

for k !1 : (46)

This formula was useful is providing an initial guess in the numerial root

�nding proedure for equation (43) for large k.

5. Singularities in D = 5

Having learned about self-similar solutions, we are now prepared to un-

derstand the results of numerial studies, �rst reported in [7℄, of the Cauhy

problem for the YM equation in �ve spae dimensions

w

tt

= w

rr

+

2

r

w

r

+

3

r

2

w(1 � w

2

) : (47)

The main goal of these studies was to determine the asymptotis of blowup.

Our numerial simulations were based on �nite di�erene methods ombined

with adaptive mesh re�nement. The latter were instrumental in resolving the

struture of singularities developing on vanishingly small sales. We stress

that a priori analytial insight into the problem, in partiular the knowledge

of self-similar solutions was very helpful in interpreting the numerial results.

We solved equation (47) for a variety of initial onditions interpolating

between small and large data. A typial example of suh initial data is a

Gaussian (ingoing or time-symmetri) of the form

w(0; r) = 1�Ar

2

exp

�

��(r �R)

2

�

; (48)

with adjustable amplitude A and �xed parameters � and R. The global

behaviour of solutions is qualitatively the same for all families of initial

data and depends ritially on the amplitude A (or any other parameter

whih ontrols the �strength� of initial data). For small amplitudes the

solutions disperse, that is the energy is radiated away to in�nity and in any

ompat region the solution approahes the vauum solution w = 1. This

is in agreement with general theorems on global existene for small initial

data [2℄. Heuristially, this follows from the fat the for a small amplitude

the nonlinearity is dominated by the dispersive e�et of the linear wave

operator. For large amplitudes we observe the development of two learly

separated regions: an outer region where the evolution is very slow and a

rapidly evolving inner region where the solution attains a kink-like shape

whih shrinks in a self-similar manner to zero size in a �nite time T . The

kink is, of ourse, nothing else but the self-similar solution W

0

(

r

T�t

)

1

(see

�gure 3). We summarise these �ndings in the following onjeture:

1

Throughout this setion we use the similarity variable � =

r

T�t

(rather than x) and

abuse the notation by writing W

n

(�) to denote

~

W

n

(�) =W

n

(x).
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Conjeture 1 (On blowup in D = 5). Solutions of equation (47) orre-

sponding to su�iently large initial data do blowup in �nite time in the sense

that w

rr

(t; 0) diverges as t % T for some T > 0. The universal asymptoti

pro�le of blowup is given by the stable self-similar solution:

lim

t%T

w(t; (T � t)r) = W

0

(r) : (49)
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Fig. 3. The upper plot shows the late time evolution of time symmetri initial data

of the form (48) with � = 10; R = 2, and A = 0:2. As the blowup progresses,

the inner solution gradually attains the form of the stable self-similar solution

W

0

(r=(T � t)). The outer solution appears frozen on this timesale. In the lower

plot the resaled solutions w(t; (T � t))r are shown to ollapse to the pro�le W

0

(r)

(solid line).
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We think that the basi mehanism whih is responsible for the observed

asymptoti self-similarity of blowup an be viewed as the onvergene to the

lowest �energy� on�guration. To see this, let us rewrite (47) in terms of the

similarity variable � and the slow time � = � ln(T � t) to get

w

��

+w

�

+2�w

��

=(1� �

2

)

�

w

��

+

2

�

w

�

�

+

3

�

2

w(1 � w

2

) : (50)

In this way the problem of blowup was onverted into the problem of asymp-

toti behaviour of solutions for � ! 1. The natural �energy� funtional

assoiated with this problem is

K(w) =

1

Z

0

�

�

2

w

2

�

+

3

2

(1� w

2

)

2

1� �

2

�

d� : (51)

K(w) has a minimum at the self-similar solution W

0

and saddle points with

n unstable diretions at solutions W

n

with n > 0. Sine the wave equation

(50) ontains a damping term re�eting an outward �ux of energy through

the past light one of the singularity, we suspet (but annot prove) that

K(w) dereases with time. If so, it is natural to expet that solutions will

tend asymptotially to the minimum of K(w).

We already know that solutions with small data disperse and solutions

with large data blow up. The question is what happens in between. Using

bisetion, we found that along eah interpolating family of initial data there

is a threshold value of the parameter, say the amplitude A

�

, below whih the

solutions disperse and above whih a singularity is formed. The evolution

of initial data near the threshold was found to go through a transient phase

whih is universal, i.e. the same for all families. This intermediate attrator

was identi�ed as the self-similar solution W

1

. Having gone through this

transient phase, at the end the solutions leave the intermediate attrator

towards dispersal or blowup. This behaviour is shown in �gure 4 for the

time-symmetri initial data of the form (48).

The universality of the dynamis at the threshold of singularity forma-

tion an be understood heuristially as follows

2

. As we showed above, the

self-similar solution W

1

has exatly one unstable mode � in other words the

stable manifold of this solution has odimension one and therefore generi

one-parameter families of initial data do interset it. The points of inter-

setion orrespond to ritial initial data that onverge asymptotially to

W

1

. The marginally ritial data, by ontinuity, initially remain lose to the

2

This heuristi piture of the dynamis near the threshold, borrowed from dynamial

systems theory, has been �rst given in the ontext of Einstein's equation � see

Setion 6 and [12℄.
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Fig. 4. The dynamis of time-symmetri initial data of the form (48) with ampli-

tudes that are �ne-tuned to the threshold of singularity formation. The resaled

solution w(t; (T � t)r) is plotted against ln(r) for a sequene of intermediate times.

Shown (solid and dashed lines) is the pair of solutions starting with marginally rit-

ial amplitudes A = A

�

� ", where A

�

= 0:144296087005405. Sine " = 10

�15

, the

two solutions are indistinguishable on the �rst seven frames. The onvergene to

the self-similar solution W

1

(dotted line) is learly seen in the intermediate asymp-

totis. The last two frames show the solutions departing from the intermediate

attrator towards blowup and dispersal, respetively.

stable manifold and approah W

1

for intermediate times but eventually are

repelled from its viinity along the one-dimensional unstable manifold (see

�gure 5). Aording to this piture the universality of the nearly ritial

dynamis follows immediately from the fat that the same unstable mode

dominates the evolution of all solutions. More preisely, the evolution of

marginally ritial solutions in the intermediate asymptotis an be approx-

imated as

w(t; r) = W

1

(�) + (A)(T � t)

��

1

�1

v

(

�) + radiation; (52)

where v

1

is the single unstable mode with the eigenvalue �

1

= 4. The small

onstant (A), whih is the only vestige of the initial data, quanti�es an

admixture of the unstable mode � for preisely ritial data (A

�

) = 0. The

time of departure from the intermediate attrator is determined

by the time t

�

in whih the unstable mode grows to a �nite size, i.e.,
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Fig. 5. A shemati phase spae piture of the dynamis at the threshold of singu-

larity formation.

(A)(T � t

�

)

��

1

�1

� O(1). Using (A) � 

0

(A

�

)(A � A

�

) and substitut-

ing �

1

= 4, we get T � t

�

� jA

�

�Aj

1=5

. Various saling laws an be derived

from this. For example, onsider solutions with marginally sub-threshold

amplitudes A = A

�

� ". For suh solutions the energy density

e(t; r) =

w

2

t

r

2

+

w

2

r

r

2

+

3(1 � w

2

)

2

2r

4

(53)

initially grows at the entre, attains a maximum at a ertain time � t

�

and

then drops to zero. Substituting (52) into (53) we get that e(t; 0) � (T�t)

�4

,

and hene e(t

�

; 0) � "

�4=5

.

6. Connetion with ritial phenomena in gravitational ollapse

The behaviour of solutions near the threshold of singularity formation de-

sribed above shares many features with ritial phenomena at the threshold

of blak hole formation in gravitational ollapse. To explain these similari-

ties, we now brie�y reall the phenomenology and heuristis of the ritial

gravitational ollapse. Consider a spherial shell of matter and let it ol-

lapse under its own weight. The dynamis of this proess, modelled by

Einstein's equations, an be understood intuitively in terms of the ompeti-

tion between gravitational attration and repulsive internal fores (due, for

instane, to kineti energy of matter or pressure). If the initial on�gura-

tion is dilute, then the repulsive fores �win� and the ollapsing matter will

rebound or implode through the entre, and eventually will disperse. On
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the other hand, if the density of matter is su�iently large, some fration

of the initial mass will form a blak hole. Critial gravitational ollapse o-

urs when the attrating and repulsive fores governing the dynamis of this

proess are almost in balane, or in other words, the initial on�guration is

near the threshold of blak hole formation. The systemati studies of riti-

al gravitational ollapse were launhed in the early nineties by the seminal

paper by Choptuik [11℄ in whih he investigated numerially the ollapse of

a self-gravitating massless salar �eld.

Evolving initial data �ne-tuned to the border between no-blak-hole and

blak-hole spaetimes, Choptuik found the following unforseen phenomena

near the threshold:

(i) universality: all initial data whih are near the blak hole threshold go

through a universal transient period in their evolution during whih

they approah a ertain intermediate attrator, before eventually dis-

persing or forming a blak hole. This universal intermediate attrator

is usually referred to as the ritial solution.

(ii) disrete self-similarity: the ritial solution is disretely self-similar,

that is it is invariant under dilations by a ertain �xed fator alled

the ehoing period.

(iii) blak-hole mass saling: for initial data that do form blak holes, the

masses of blak holes satisfy the power law M

bh

� "



, where " is the

distane to the threshold and  is a universal (i.e., the same for all

initial data) ritial exponent. Thus, by �ne tuning to the threshold

one an make an arbitrarily tiny blak hole. Put di�erently, there is

no mass gap at the transition between blak-hole and no-blak-hole

spaetimes.

What Choptuik found for the salar �eld, has been later observed in

many other models of gravitational ollapse, although the symmetry of the

ritial solution itself was found to depend on the model: in some ases the

ritial solution is self-similar (ontinuously or disretely), while in other

ases the ritial solution is stati (or periodi). In the latter ase blak hole

formation turns on with �nite mass. These two kinds of ritial behaviour

are referred to as the type II or type I ritiality, respetively, to emphasise

the formal analogy with seond and �rst order phase transitions in statistial

physis. We refer the interested reader to [12℄ for an exellent review of the

growing literature on ritial gravitational ollapse.

The present understanding of ritial behaviour in gravitational ollapse

is based on the same phase spae piture as in �gure 5, that is, it is assoiated

with the existene of a ritial solution with exatly one unstable mode. This

piture leads to some quantitative preditions. In partiular, in the ase of
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type II ritial ollapse, an elementary dimensional analysis shows that the

ritial exponent  in the power law M

bh

� "



is a reiproal of the unstable

eigenvalue of the ritial solution.

By now, the similarities between type II ritial gravitational ollapse

and the dynamis at the threshold of singularity formation in the 5 + 1 YM

equations should be evident. This analogy, together with similar results for

wave maps in 3+1 dimensions [5,13℄, shows that the basi properties of rit-

ial ollapse, suh as universality, saling, and self-similarity, �rst observed

for Einstein's equations, atually have nothing to do with gravity and seem

to be robust properties of superritial nonlinear wave equations. The ob-

vious advantage of toy models, suh as the one presented in this paper, is

their simpliity whih allowed to get a muh better analyti grip on ritial

phenomena than in the ase of Einstein's equations; in partiular, it was

possible to prove existene of the ritial solution. The only harateristi

property of type II ritial ollapse whih so far has not found in simpler

models (besides, of ourse, the absene of blak holes whih are replaed by

singularities) is disrete self-similarity of the ritial solution. It would be

very interesting to design a toy model whih exhibits disrete self-similarity

at the threshold for singularity formation beause this ould give us insight

into the origin of this mysterious symmetry.

7. Singularities in D = 4

In this setion we onsider the Cauhy problem for the YM equation in

four spae dimensions

w

tt

= w

rr

+

1

r

w

r

+

2

r

2

w(1� w

2

): (54)

We begin by realling some fats onerning equation (54) whih are be

important in understanding the dynamis of singularity formation. First,

we note that, in ontrast to D = 5, there are no smooth self-similar solution

in D = 4. This follows from the fat that in D dimensions the loal solutions

of equation (10) near the past light one behave as (1� �

2

)

D�3

2

, hene they

are not smooth if D is even (in partiular, they are not di�erentiable in

D = 4). Although suh singular self-similar solutions do exist, they annot

develop from smooth initial data and therefore they are not expeted to

partiipate in the dynamis.

Seond, D = 4 is the ritial dimension in the sense that the energy (7)

does not hange under saling. This means that, even though the model is

sale invariant, a nontrivial �nite energy stati solution may exist

3

. In fat,

3

Another way of seeing this is to notie that only in D = 4 the YM oupling onstant

e

2

provides the sale of energy.



1916 P. Bizo«

suh a stati solution is well known

W

S

(r) =

1� r

2

1 + r

2

: (55)

This is the instanton in the four-dimensional Eulidean YM theory. Of

ourse, by re�etion symmetry, �W

S

(r) is also the solution. Sine the model

is sale invariant, the solution W

S

(r) generates an orbit of stati solutions

W

�

S

(r) =W

S

(r=�), where 0 < � <1.

To analyse the linear stability of the instanton, we insert w(t; r) =

W

S

(r) + e

ikt

v(r) into (54) and linearise. In this way we get the eigenvalue

problem (the radial Shrödinger equation)

�

�

d

2

dr

2

�

1

r

d

dr

+ V (r)

�

v = k

2

v; V (r) = �

2(1� 3W

2

S

)

r

2

: (56)

This problem has a zero eigenvalue k

2

= 0 whih follows from sale invari-

ane. The orresponding eigenfuntion (so alled zero mode) is determined

by the perturbation generated by saling

v

0

(r) = �

d

d�

W

�

S

(r)

�

�

�

�=1

= rW

0

S

(r) =

4r

2

(1 + r

2

)

2

: (57)

Sine the zero mode v

0

(r) has no nodes, it follows by the standard result

from Sturm�Liouville theory that there are no negative eigenvalues, and

eo ipso no unstable modes around W

S

(r). Thus, the instanton is marginally

stable. Note that the zero eigenvalue lies at the bottom of the ontinuous

spetrum k

2

� 0, hene there is no spetral gap in the problem.

After these preliminaries, we return to the disussion of the Cauhy

problem for equation (54). For small energies the solutions disperse, in

agreement with general theorems. For large energies, at �rst sight the global

behaviour seems similar to the D = 5 ase � as before, near the entre the

solution attains the form of a kink whih shrinks to zero size. However, this

similarity is super�ial beause now the kink is not a self-similar solution

(as no suh solution exists). It turns out (see �gure 6) that the kink has the

form of the sale-evolving instanton

w(t; r) �W

S

�

r

�(t)

�

; (58)

where a saling fator �(t) is a positive funtion whih tends to zero as

t! T . We summarise these �ndings in the following onjeture:
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Conjeture 2 (On blowup in D = 4). Solutions of equation (54) with

su�iently large energy do blow up in �nite time in the sense that w

rr

(t; 0)

diverges as t % T for some T > 0. The universal asymptoti pro�le of

blowup is given by the instanton. More preisely, there exists a positive

funtion �(t)& 0 for t% T suh that

lim

t%T

u(t; �(t)r) = W

S

(r) : (59)
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Fig. 6. The upper plot shows the formation of a singularity for large initial data of

the form (48) with A = 0:5. The inner solution has the form of the sale-evolving

instanton W

S

(r=�(t)) with the sale fator �(t) going to zero slightly faster than

linearly. In the lower plot the resaled solutions are shown to ollapse to the pro�le

of the instanton W

S

(r) (solid line).
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The key question whih is left open in this onjeture is: what determines

the evolution of the saling fator �(t); in partiular, what is the asymptoti

behaviour of �(t) for t! T ? Numerial evidene shown in �gure 7 suggests

that the rate of blowup goes asymptotially to zero, that is ( _= d=dt)

lim

t!T

�(t)

T � t

= � lim

t!T

_

� = 0 ; (60)

but it seems very hard to determine an exat asymptotis of �(t) from pure

numeris

4

.
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Fig. 7. Comparison of the numerially omputed saling fator divided by T�t (for

the same data as in �gure 6) with the analyti formula

�(t)

T�t

=

q

2

3

(� ln(T�t))

�1=2

.

Reently, an analytial approah to this problem has been suggested

in [15℄. Below we sketh the main idea of this approah. Let

M � fW

S

(r=�)j� 2 R

+

g be a manifold of resaled instantons (a one-

dimensional entre manifold). Assuming that a solution is in a neighbour-

hood ofM, we deompose it as

w = W

S

(�) + v(t; �); � = r=�(t): (61)

Here v represents a small deviation of the solution from M and � is the

olletive oordinate onM. To �x the splitting between these two parts we

4

This issue is also disussed by Linhart and Sadun in [14℄.
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require that Pv = 0, where P is the projetion on M. Plugging (61) into

(54) we get (

0

= d=d�)

�

2

�v � 2�

_

�� _v

0

+ Lv +N(v) = �

�

��W

0

S

�

_

�

2

(�

2

W

00

S

+ 2�W

0

S

); (62)

where L is the linear perturbation operator about the instanton

L = �

�

2

��

2

�

1

�

�

��

�

2(1 � 3W

2

S

)

�

2

; (63)

and

N(v) =

6W

S

�

2

v

2

+

2

�

2

v

3

: (64)

It is lear from (62) that v = O(

_

�

2

), hene for v to deay to zero as t! T ,

the rate of blowup must go to zero as well. We stress this point to empha-

sise that the linear evolution of �(t), predited for example by the geodesi

approximation, is inonsistent with Conjeture 2. Next, by projeting equa-

tion (62) on M and in the orthogonal diretion, we get a oupled system

onsisting of a nonhomogeneous wave equation for v and an ordinary dif-

ferential equation for �. Solving the �rst equation for v and plugging the

result into the seond equation, we obtain in the lowest order the following

modulation equation

�

�

� =

3

4

_

�

4

: (65)

From this we get the leading order asymptotis for t! T

�(t) �

r

2

3

T � t

p

� ln(T � t)

: (66)

As shown in �gure 7 this result is in rough agreement with numeris. There

are many possible soures of the apparent disrepany. On the numerial

side there are disretisation errors, an error in estimating the blowup time,

or errors in omputing � from the data. On the analytial side, there might

be orretions to (66) oming from the bounded region expansion and, more

importantly, from the far �eld behaviour

5

. Finally, and in our opinion most

likely reason of disrepany is that the solution shown in �gure 7 has not

yet reahed the truly asymptoti regime and onsequently the higher order

orretions to formula (66) are still signi�ant.

5

The derivation of (65) is not quite straightforward beause of the presene of infrared

divergenies whih need to be regularised.
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The issue of blowup rate is losely related to the problem of energy on-

entration in the singularity. To explain this, we de�ne the kineti and the

potential energies at time t < T inside the past light one of the singularity

E

K

(t) = 6�

2

T�t

Z

0

w

2

t

rdr; E

P

(t) = 6�

2

T�t

Z

0

�

w

2

r

+

(1� w

2

)

2

r

2

�

rdr: (67)

Substituting (58) into (67) we obtain

E

K

(t) = 6�

2

_

�

2

T�t

�(t)

Z

0

W

0

S

2

rdr; E

P

(t) = 6�

2

T�t

�(t)

Z

0

�

W

0

S

2

+

(1�W

2

S

)

2

r

2

�

rdr:

(68)

Assuming (60), this implies that

lim

t!T

E

K

(t) = 0; lim

t!T

E

P

(t) = 16�

2

: (69)

Thus, the energy equal to the energy of the instanton gets onentrated in

the singularity. This means that in the proess of blowup the exess energy

must be radiated away from the inner region as the solution onverges to

the instanton.

It is worth pointing out that the onentration of energy is a nees-

sary ondition for blowup in the ritial dimension. To see this, suppose

that the solution blows up at time T and assume for ontradition that

lim

t!T

E(t) = 0. Then, by hoosing a su�iently small " > 0 we an have

E(T � ") arbitrarily small. This implies, by ausality and global existene

for small energy data, that the solution exists globally in time, ontraditing

the assumption. For radial equations of the type

w

tt

= w

rr

+

1

r

w

r

+

f(w)

r

2

; (70)

a stronger result was proved by Struwe [16℄ who basially showed that if the

solution of (70) blows up, then it must do so in the manner desribed in

Conjeture 2. In this sense formation of singularities is intimately tied with

the existene of a stati solution.

Finally, we address brie�y the issue of the threshold of singularity forma-

tion. Using the tehnique desribed in Setion 5, along eah interpolating

family of initial data we an determine the ritial point separating blowup

from dispersal. However, in ontrast to the D = 5 ase, we see no evidene

for the existene of an intermediate attrator in the evolution of nearly rit-

ial data. This fat, together with a similar result for 2 + 1 dimensional
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wave maps [6℄ suggests that in the ritial dimension the transition between

blowup and dispersal is not governed by any ritial solution. We suspet

that the evolution of preisely ritial initial data still has the form (58)

but the dynamis of the saling fator is di�erent than in (66). This be-

lief is based on the fat that in the evolution of marginally ritial initial

data we an learly distinguish a transient phase during whih �(t) drops

very quikly and then, either reahes a minimum and starts growing (in the

ase of dispersal), or keeps dereasing with the �normal� rate (in the ase of

blowup).

8. Conlusions

There are two main lessons that we wanted to onvey in this survey.

The �rst lesson is that there are striking analogies between major evolu-

tion equations. In partiular, the mehanism of blowup to a large extent

is determined by the ritiality lass of the model. These analogies an be

used to get insight into hard problems (suh as singularity formation for

Einstein's equations) by studying toy models whih belong to the same rit-

iality lass. This approah is in the spirit of general philosophy expressed

by David Hilbert in his famous leture delivered before the International

Congress of Mathematiians at Paris in 1900 [17℄: �In dealing with math-

ematial problems, speialisation plays, as I believe, a still more important

part than generalisation. Perhaps in most ases where we seek in vain the

answer to a question, the ause of the failure lies in the fat that problems

simpler and easier than the one in hand have been either not at all or inom-

pletely solved. All depends, then, on �nding out these easier problems, and

on solving them by means of devies as perfet as possible and of onepts

apable of generalisation.�

The seond lesson is onerned with the interplay between numerial

and analytial tehniques. Aurate and reliable numerial simulation of

singular behaviour is di�ult and hard to assess. In order to keep trak

of a singularity developing on exeedingly small spatio-temporal sales, one

needs sophistiated tehniques suh as adaptive mesh re�nement. For these

tehniques the onvergene and error analysis are laking so extreme are

is needed to make sure that the omputed singularities are not numerial

artifats. For this reason, in order to feel on�dent about numeris it is

important to have some analytial information, like existene of self-similar

solutions. Without a theory, simulations alone do not provide ample ev-

idene for the existene of a singularity. We believe that the interation

between numerial and analytial tehniques, illustrated here by the studies

of blowup, will beome more and more important in future as we begin to

attak more di�ult problems.
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