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This is a survey of re
ent studies of singularity formation in solutions of

spheri
ally symmetri
 Yang�Mills equations in higher dimensions. The

main attention is fo
used on �ve spa
e dimensions be
ause this 
ase exhibits

interesting similarities with Einstein's equations in the physi
al dimension,

in parti
ular the dynami
s at the threshold of singularity formation shares

many features (su
h as universality, self-similarity, and s
aling) with 
riti
al

phenomena in gravitational 
ollapse. The borderline 
ase of four spa
e

dimensions is also analysed and the formation of singularities is shown to

be intimately tied to the existen
e of the instanton solution.

PACS numbers: 11.10.Lm, 04.20.Dw

1. Introdu
tion

One of the most interesting features of many nonlinear evolution equa-

tions is the spontaneous onset of singularities in solutions starting from

perfe
tly smooth initial data. Su
h a phenomenon, usually 
alled �blowup�,

has been a subje
t of intensive studies in many �elds ranging from �uid

dynami
s to general relativity. Whether or not the blowup 
an o

ur for

a given nonlinear evolution equation is the 
entral mathemati
al question

whi
h, from the physi
al point of view, has a dire
t bearing on our under-

standing of the limits of validity of the 
orresponding model. Unfortunately,

this is often a di�
ult question. Two famous examples, for whi
h the answer

is not known, are the Navier�Stokes equation and the Einstein equations.

On
e the existen
e of blowup is established for a parti
ular equation, many
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further questions 
ome up, su
h as: When and where does the blowup o
-


ur? What is the 
hara
ter of blowup and is it universal? Can a solution be


ontinued past the singularity?

In this paper we 
onsider these questions for the Yang�Mills (YM) equa-

tions in higher dimensions. In the physi
al 3 + 1 dimensions, where the

YM equations are the basi
 equations of gauge theories des
ribing the weak

and strong intera
tions of elementary parti
les, it is known that no singu-

larities 
an form. This was shown by Eardley and Mon
rief [1℄ who proved

that solutions starting from smooth initial data remain smooth for all future

times. The motivation for studying the YM equations in unphysi
al D + 1

dimensions for D > 3 is twofold (and unrelated to the latest fashion of do-

ing physi
s in extra dimensions). From the mathemati
al point of view, it

is the obvious thing to ask how the property of global regularity depends

on the dimension of the underlying spa
etime and whether singularities 
an

form in D + 1 dimensions for D > 3. However, there is also a less evident

physi
al reason whi
h is motivated by the hope that by understanding the

problem of singularity formation for the YM equations one might get insight

into the analogous, but mu
h more di�
ult, problem in general relativity.

From this viewpoint � in whi
h the YM equations are 
onsidered as a toy

model for the Einstein equations � it is essential that these two equations

belong to the same 
riti
ality 
lass. Let us re
all that the 
riti
ality 
lass

is de�ned as the degree � in the homogeneous s
aling of energy E ! �

�

E

under dilations x ! x=�. The 
lassi�
ation of equations into sub
riti
al

(� < 0), 
riti
al (� = 0), and super
riti
al (� > 0) is a basis of the heuristi


meta-prin
iple a

ording to whi
h sub
riti
al equations are globally regular,

while super
riti
al equations may develop singularities for some (large) ini-

tial data [2℄. For the YM equations we have �

YM

= D � 4, while for the

Einstein equations �

E

= D�2. Therefore, the YM equations in D = 5 have

the same 
riti
ality, � = 1, as the Einstein equations in the physi
al dimen-

sion. Another way of seeing this is to note that in D = 5 the dimension of

the YM 
oupling 
onstant [e

2

℄ = M

�1

L

D�4

(in 
 = 1 units) is the same as

the dimension of the physi
al Newton's 
onstant [G℄ = M

�1

L.

For the reason just explained, the main body of this paper is fo
used on

the lowest super-
riti
al dimension D = 5. In Se
tion 3 we show that in

this 
ase there exists a 
ountable family of regular (by regularity we mean

analyti
ity inside the future light 
one) spheri
ally symmetri
 self-similar

solutions labelled by a nonnegative integer n (a nodal number). Next, using

linear stability analysis we show in Se
tion 4 that the number of unstable

modes around a given solution is equal to its nodal number. The role of self-

similar solutions in the dynami
al evolution is studied in Se
tion 5, where

we show that: (i) the n = 0 solution determines a universal asymptoti
s

of singularity formation for solutions starting from generi
 �large� initial
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data; (ii) the n = 1 solution plays the role of a 
riti
al solution sitting

at the threshold of singularity formation. The latter is in many respe
ts

similar to the 
riti
al behaviour at the threshold of bla
k hole formation in

gravitational 
ollapse. In both 
ases the threshold of singularity (or bla
k

hole) formation 
an be identi�ed with the 
odimension-one stable manifold

of a self-similar solution with exa
tly one unstable mode. These similarities

are dis
ussed in detail in Se
tion 6.

We 
onsider also the Cau
hy problem for the YM equations in D = 4.

Despite intensive studies of this borderline 
ase, the problem of global ex-

isten
e is open. In Se
tion 7 we des
ribe numeri
al simulations whi
h, in


ombination with analyti
 results, strongly suggest that large-energy solu-

tions do blow up. We show that the pro
ess of singularity formation is due to


on
entration of energy and pro
eeds via adiabati
 shrinking of the instan-

ton solution. At the end, a re
ent attempt of determining the asymptoti


rate of shrinking is sket
hed.

We remark that there are 
lose parallels between YM equations in D+1

dimensions and wave maps in (D � 2) + 1 dimensions [3℄. Indeed, many of

the phenomena des
ribed here are mirrored for the equivariant wave maps

into spheres in three [4,5℄ and two [6℄ spatial dimensions.

Se
tions 5 and 7 of this survey are based on joint work with Tabor [7℄.

The material of Se
tions 3 and 4 is new.

2. Setup

We 
onsider Yang�Mills (YM) �elds in D + 1 dimensional Minkowski

spa
etime (in the following Latin and Greek indi
es take the values 1; 2; : : : ;D

and 0; 1; 2; : : : ;D respe
tively). The gauge potential A

�

is a one-form with

values in the Lie algebra g of a 
ompa
t Lie group G. In terms of the


urvature F

��

= �

�

A

�

� �

�

A

�

+ [A

�

; A

�

℄ the a
tion is

S =

1

e

2

Z

Tr (F

��

F

��

)d

D

x dt ; (1)

where e is the gauge 
oupling 
onstant. Hereafter we set e = 1. The YM

equations derived from (1) are

�

�

F

��

+ [A

�

; F

��

℄ = 0 : (2)

As written, this equation is underdetermined be
ause of the gauge invarian
e

A

�

! U

�1

A

�

U + U

�1

�

�

U ; (3)

where U is an arbitrary fun
tion with values in G. In order to 
orre
tly

formulate the Cau
hy problem for equation (2), one must impose additional
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onditions whi
h �x this gauge ambiguity. We shall not dis
uss this issue

here be
ause in the spheri
ally symmetri
 ansatz, to whi
h this paper is

restri
ted, the gauge is �xed automati
ally.

For simpli
ity, we take here G = SO(D) so the elements of SO(D) 
an

be 
onsidered as skew-symmetri
 D�D matri
es and the Lie bra
ket is the

usual 
ommutator. Assuming the spheri
ally symmetri
 ansatz [8℄

A

ij

�

(x) =

�

Æ

i

�

x

j

� Æ

j

�

x

i

�

1� w(t; r)

r

2

; (4)

the YM equations redu
e to the s
alar semilinear wave equation for the

magneti
 potential w(t; r)

�w

tt

+�

(D�2)

w +

D � 2

r

2

w(1 � w

2

) = 0; (5)

where �

(D�2)

= �

2

r

+

D�3

r

�

r

is the radial Lapla
ian in D � 2 dimensions.

The 
entral question for equation (5) is: 
an solutions starting from smooth

initial data

w(0; r) = f(r) ; w

t

(0; r) = g(r) (6)

be
ome singular in future? As mentioned above, in the physi
al D = 3

dimensions Eardley and Mon
rief answered this question in the negative [1℄.

However, simple heuristi
 arguments indi
ate that the property of global

regularity enjoyed by the YM equations in D = 3 might break down in

higher dimensions. In order to see why the global behaviour of solutions is

expe
ted to depend 
riti
ally on the dimension D, we re
all two basi
 fa
ts.

The �rst fa
t is the 
onservation of (positive de�nite) energy

E =

Z

R

D

Tr

�

F

2

0i

+ F

2

ij

�

d

D

x = 
(D)

1

Z

0

�

w

2

t

+ w

2

r

+

D � 2

2r

2

(1� w

2

)

2

�

r

D�3

dr;

(7)

where the 
oe�
ient 
(D) = (D � 1)vol(S

D�1

) follows from the integration

over the angles and taking the tra
e. The se
ond fa
t is s
ale-invarian
e of

the YM equations: if A

�

(x) is a solution of (2), so is

~

A

�

(x) = �

�1

A

�

(x=�),

or equivalently, if w(t; r) is a solution of (5), so is ~w(t; r) = w(t=�; r=�). Un-

der this s
aling the energy s
ales as

~

E = �

D�4

E, hen
e the YM equations

are sub
riti
al for D � 3, 
riti
al for D = 4, and super
riti
al for D � 5. In

the sub
riti
al 
ase, shrinking of solutions to arbitrarily small s
ales 
osts

in�nite amount of energy, so it is forbidden by energy 
onservation. In other

words, transfer of energy to arbitrarily high frequen
ies is impossible and


onsequently the Cau
hy problem should be well posed in the energy norm.

This important fa
t was proved in D = 3 by Klainerman and Ma
hedon [9℄,
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who thereby strengthened the result of Eardley and Mon
rief. In the su-

per
riti
al 
ase, shrinking of solutions might be energeti
ally favourable and


onsequently singularities are anti
ipated. In fa
t, we shall show below that

singularities do form already in the lowest super
riti
al dimension D = 5.

In the 
riti
al dimension D = 4 the problem of singularity formation is more

subtle be
ause the s
aling argument is in
on
lusive.

3. Self-similar solutions in D = 5

In order to set the stage for the dis
ussion of singularity formation we �rst

need to analyse in detail the stru
ture of self-similar solutions of equation

(5). As we shall see, these solutions play a key role in understanding the

nature of blowup. By de�nition, self-similar solutions are invariant under

dilations w(t; r)! w(t=�; r=�), hen
e they have the form

w(t; r) = W (�) ; � =

r

T � t

; (8)

where a positive 
onstant T , 
learly allowed by the time translation invari-

an
e, is introdu
ed for later 
onvenien
e. Note that for a self-similar solution

we have

�

2

r

W (�)

�

�

�

r=0

=

1

(T � t)

2

W

00

(0) ; (9)

hen
e the solution be
omes singular at the 
entre when t ! T (there is no

blowup in the �rst derivative be
ause regularity demands that W

0

(0) = 0).

Thus, ea
h self-similar solution W (�) provides an expli
it example of a sin-

gularity developing in �nite time from smooth initial data.

Substituting the ansatz (8) into (5) one obtains the ordinary di�erential

equation

W

00

+

�

D � 3

�

+

(D � 5)�

1� �

2

�

W

0

+

D � 2

�

2

(1� �

2

)

W (1�W

2

) = 0 : (10)

As explained in the introdu
tion, be
ause of the expe
ted 
onne
tions with

the Einstein equations, we are mainly interested in the lowest super-
riti
al

dimension D = 5. In this 
ase equation (10) redu
es to

W

00

+

2

�

W

0

+

3

�

2

(1� �

2

)

W (1�W

2

) = 0 : (11)

Although the similarity 
oordinate � is natural in the dis
ussion of singu-

larity formation, it has a disadvantage of not 
overing the region t > T , in

parti
ular it does not extend to the future light 
one of the point (T; 0).

For this reason we de�ne a new 
oordinate x = 1=� whi
h 
overs the whole
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spa
etime: the past and the future light 
ones are lo
ated at x = 1 and

x = �1, respe
tively; while the 
entre r = 0 
orresponds to x = 1 (for

t < T ) and x = �1 (for t > T ). In terms of x equation (11) be
omes

(x

2

� 1)W

00

+ 3W (1�W

2

) = 0 : (12)

We �rst 
onsider this equation inside the past light 
one, that is for 1 � x <1

and impose the boundary 
onditions

W (1) = 0 and W (1) = �1 ; (13)

whi
h follow from the demand of smoothness at the endpoints. As we shall

see below, on
e a solution to this boundary value problem is 
onstru
ted,

its extension beyond the past light 
one 
an be easily done.

To show that equation (12) admits solutions satisfying (13) we shall

employ a shooting te
hnique. The main idea of this method is to repla
e

the boundary value problem by the initial value problem with initial data

imposed at one of the endpoints and then adjusting these data so that the

solution hits the desired boundary value at the se
ond endpoint. In the 
ase

at hand we shall shoot from x = 1 towards in�nity. Substituting a formal

power series expansion about x = 1 into (12) one �nds the asymptoti


behaviour

W (x) = a(x� 1)�

3a

4

(x� 1)

2

+O

�

(x� 1)

3

�

; (14)

where a is a free parameter determining uniquely the whole series. In the

following a solution of equation (12) starting at x = 1 with the asymptoti


behaviour (14) will be 
alled an a-orbit. Without loss of generality we may

assume that a � 0. We 
laim that there is a 
ountable set of values fa

n

g for

whi
h the a

n

-orbits exist for all x � 1 and have the desired asymptoti
s at

in�nity (su
h orbits will be 
alled 
onne
ting). The proof 
onsists of several

steps.

Step 1 (Lo
al existen
e). First, we need to show that a-orbits do in fa
t

exist, that is, the series (14) has a nonzero radius of 
onvergen
e. Sin
e the

point x = 1 is singular, this fa
t does not follow from standard theorems.

Fortunately, in [10℄ Breitelohner, Forgá
s, and Maison have derived the fol-

lowing result 
on
erning the behaviour of solutions of a system of ordinary

di�erential equations near a singular point:

Theorem [BFM℄. Consider a system of �rst order di�erential equations for

n+m fun
tions u = (u

1

; : : : ; u

n

) and v = (v

1

; : : : ; v

m

)

y

du

i

dy

= y

�

i

f

i

(y; u; v); y

dv

i

dy

= ��

i

v

i

+ y

�

i

g

i

(y; u; v); (15)
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where 
onstants �

i

> 0 and integers �

i

; �

i

� 1 and let C be an open subset

of R

n

su
h that the fun
tions f and g are analyti
 in the neighbourhood of

y = 0; u = 
; v = 0 for all 
 2 C. Then there exists an n-parameter family

of solutions of the system (15) su
h that

u

i

(y) = 


i

+O(y

�

i

); v

i

(y) = O(y

�

i

); (16)

where u

i

(y) and v

i

(y) are de�ned for all 
 2 C; jyj < y

0

(
) and are analyti


in y and 
.

We shall make use of this theorem to prove the lo
al existen
e of a-orbits.

In order to put equation (12) into the form (16) we de�ne the variables

y = x� 1; u(y) = W

0

; v(y) =

W

x� 1

�W

0

; (17)

and get

yv

0

= �v + yf; yu

0

= yf; f =

3(u+ v)

�

1� y

2

(u+ v)

2

�

2 + y

: (18)

Sin
e the fun
tion f(y; u; v) is analyti
 near y = 0 for any u and v, a

ording

to the BFM theorem, there exists a one-parameter family of lo
al solutions

su
h that

u(y) = a+O(y); v(y) = O(y) : (19)

Transforming (19) ba
k to the original variables we obtain the behaviour of

a-orbits.

Step 2 (A priori global behaviour). It follows immediately from (12) that

for x > 1 a solution 
annot have a maximum (resp. minimum) for W > 1

(resp. W < �1). Thus, on
e the solution leaves the strip jW j < 1, it 
annot

reenter it (a
tually, su
h a solution be
omes singular for a �nite x). It is

also 
lear that as long as jW j < 1 the solution 
annot go singular. To derive

the asymptoti
s at in�nity of a-orbits that stay in the strip jW j < 1 we shall

make use of the following fun
tional

Q(x) =

1

2

(x

2

� 1)W

0

2

�

3

4

(1�W

2

)

2

: (20)

For solutions of equation (12) we have

Q

0

(x) = xW

0

2

; (21)

so Q(x) is monotone in
reasing. Now, we shall show that solutions satisfying

jW j < 1 for all x � 1 tend to W = �1 as x ! 1. To see this, �rst noti
e
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that for su
h solutions Q must be negative be
ause if Q(x

0

) > 0 for some

x

0

> 1 then jW

0

j is stri
tly positive for x > x

0

so the solution must leave

the strip jW j < 1 in �nite time. Sin
e Q

0

� 0 and Q � 0, it follows that

Q has a nonpositive limit at in�nity whi
h in turn implies by (21) that

lim

x!1

xW

0

= 0 and by (20) that lim

x!1

W exists. By L'H�pital's rule we

have lim

x!1

x

2

W

00

= 0 and using (12) again, we get that lim

x!1

W equals

�1 or 0. The latter is impossible be
ause then Q(1) = �3=4 is a global

minimum 
ontradi
ting the fa
t that Q in
reases. Thus, W (1) = �1.

Step 3 (i) (Behaviour of a-orbits for small a). Res
aling w(x) = W (x)=a

we get

(x

2

� 1)w

00

+ 3w(1 � a

2

w

2

) = 0; w(1) = 0; w

0

(1) = 1: (22)

As a! 0, the solutions of this equation tend uniformly on 
ompa
t intervals

to the solution of the limiting equation

(x

2

� 1)w

00

+ 3w = 0 (23)

with the same initial 
ondition. This equation 
an be solved expli
itly but

for the purpose of the argument it su�
es to noti
e that its solution, 
all it

w

L

(x), is os
illating at in�nity. Sin
e W (x; a) � aw

L

(x) up to an arbitrarily

large x if a is su�
iently small, it follows that the number of zeros of the

solution W (x; a) tends to in�nity as a! 0.

(ii) (Behaviour of a-orbits for large a.) We res
ale the variables, setting

y = a(x� 1), �w(y) = W (x) to get

�y(y + 2a) �w

00

+ 3 �w(1� �w

2

) = 0; �w(0) = 0; �w

0

(0) = 1: (24)

As a ! 1, the solutions of this equation tend uniformly on 
ompa
t in-

tervals to the solution �w(y) = y of the limiting equation �w

00

= 0. Thus,

W (x; a) � a(x � 1) for large a and therefore the a-orbit 
rosses W = 1 for

a �nite x.

Step 4 (Shooting argument). We de�ne the set

A

0

= fa jW (x; a) stri
tly in
reases up to some x

0

where W (x

0

; a) = 1g:

(25)

We know from Step 3 that the set A

0

is nonempty (be
ause the a-orbits with

large a belong to it) and bounded below (be
ause the a-orbits with small a

do not belong to it). Thus a

0

= inf A

0

exists. The solution W (x; a

0

) 
annot


ross the line W = 1 at a �nite x be
ause the same would be true for nearby

solutions, violating the de�nition of a

0

. Thus, 0 � W (x; a

0

) < 1 for all x

and hen
e, by Step 2, lim

x!1

W (x; a

0

) = 1. This 
ompletes the proof of

existen
e of the nodeless self-similar solution W

0

(x)

def

= W (x; a

0

).
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Next, let us 
onsider the solution with a = a

0

�" for small " > 0. By the

de�nition of a

0

there must be a point x

0

where this solution attains a positive

lo
al maximum W (x

0

) < 1 and sin
e no minima are possible for 0 < W < 1,

it follows that there must be a point x

1

> x

0

where W (x

1

; b) = 0. We shall

show that Q(x

1

; a) > 0 provided that " is su�
iently small. As argued

above this would imply that the solution W (x; a) leaves the strip jW j < 1

via W = �1. From (21) we have

Q(x

1

)�Q(x

0

) =

x

1

Z

x

0

xW

0

2

dx = �

W (x

0

)

Z

0

xW

0

dW: (26)

In order to estimate the last integral note that for x > x

0

Q(x)�Q(x

0

) =

1

2

(x

2

� 1)W

0

2

�

3

4

(1�W

2

)

2

+

3

4

(1�W

2

(x

0

))

2

> 0; (27)

so xjW

0

j >

q

3

2

p

(1�W

2

)

2

� (1�W

2

(x

0

))

2

. Substituting this into (26)

one gets

Q(x

1

) > �

3

4

�

1�W

2

(x

0

)

�

2

+

r

3

2

W (x

0

)

Z

0

p

(1�W

2

)

2

� (1�W

2

(x

0

))

2

dW:

(28)

The right hand side of this inequality is equal to

p

2=3 for W (x

0

) = 1

so, by 
ontinuity, it remains stri
tly positive for W (x

0

) near 1. By taking a

su�
iently small " we 
an haveW (x

0

) arbitrarily 
lose to 1, hen
e Q(x

1

) > 0

whi
h proves that a-orbits with a = a

0

�" have exa
tly one zero. This means

that the set A

1

= fa jW (x; a) in
reases up to some x

0

where it attains a

positive lo
al maximum W (x

0

) < 1 and then de
reases monotoni
ally up

to some x

1

where W (x

1

) = �1g is nonempty. Let a

1

= inf A

1

. By Step 3,

a

1

exists and is stri
tly positive. Using the same argument as above we


on
lude that the a

1

-orbit must stay in the region jW j < 1 for all x, hen
e

lim

x!1

W (x; a

1

) = �1. This 
ompletes the proof of existen
e of the self-

similar solution W

1

(x)

def

= W (x; a

1

) with exa
tly one zero.

The subsequent 
onne
ting orbits are obtained by indu
tion. We 
on-


lude that there exists a 
ountable family of self-similar solutions W

n

(x)

indexed by the integer n = 0; 1; : : : n whi
h 
ounts the number of zeros for

x > 1.

Remark. Sin
e the sequen
e fa

n

g is de
reasing and bounded below by zero,

it has a nonnegative limit lim

n!1

a

n

= a

�

� 0. If a

�

> 0, then the a

�

-orbit


annot leave the region jW j < 1 for a �nite x (be
ause the set of su
h orbits
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is 
learly open) hen
e it must be a 
onne
ting orbit with some �nite number

of zeros. But this 
ontradi
ts the fa
t that the number of zeros of a

n

-orbits

in
reases with n. Hen
e, a

�

= 0. This implies that for any �nite x, W

n

(x)

goes to zero when n!1.

We remark that the existen
e of the solution W

0

was �rst shown by

Cazenave, Shatah, and Tahvildar-Zadeh [3℄ via a variational method.

The shooting te
hnique is not only a powerful analyti
al tool; it is also an

e�
ient numeri
al method of solving two-point boundary value problems.

The numeri
al results produ
ed by this method are shown in Table I and

�gure 1.

TABLE I

The shooting parameters of solutions W

n

for n � 5.

n 0 1 2 3 4 5

a

n

1.25 0.4813158 0.1864517 0.0722966 0.02803703 0.01087315

-1

-0.5

0

0.5

1

1 10 100 1000 10000

w

x

n=0
n=1
n=2
n=3

Fig. 1. The �rst four self-similar solutions W

n

(x).

Surprisingly, it turned out that a

0

= 5=4 (with very good a

ura
y).

This was a hint that the solution W

0

has a simple 
losed form. Indeed,

playing with the power series expansion (14) we found that

W

0

(x) =

x

2

� 1

x

2

+

3

5

: (29)
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Below we show an amusing 
al
ulation by Maple whi
h helped us in

�nding this formula.

> restart;

> with(DEtools):

> with(numapprox):

> ode:=(x�2-1)*diff(w(x),x$ 2)+3*w(x)*(1-w(x)�2)=0;

ode := (x

2

� 1)

�

�

2

�x

2

w(x)

�

+ 3w(x) (1 � w(x)

2

) = 0

> i
:=w(1)=0,D(w)(1)=5/4;

i
 := w(1) = 0; D(w)(1) =

5

4

> sol:=dsolve({ode,i
},w(x));

sol :=

> sol_formal:=rhs(dsolve({ode,i
},w(x),type=series));

sol_formal :=

5

4

(x�1)�

15

16

(x�1)

2

+

25

64

(x�1)

3

+

25

256

(x�1)

4

�

375

1024

(x�1)

5

+O((x�1)

6

)

> pade_sol:=pade(sol_formal,x=1,[2,2℄);

pade_sol :=

5

8

(x� 1)

2

+

5

4

x�

5

4

�

1

4

+

5

4

x+

5

8

(x� 1)

2

> sol:=simplify(pade_sol);

sol := 5

x

2

� 1

3 + 5x

2

> subs(w(x)=sol,ode);

(x

2

� 1)

�

�

2

�x

2

�

5

x

2

� 1

3 + 5x

2

��

+ 15

(x

2

� 1)

�

1� 25

(x

2

� 1)

2

(3 + 5x

2

)

2

�

3 + 5x

2

= 0

> simplify(%);

0 = 0 :
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So far our analysis of self-similar solutions was restri
ted to the interior

of the past light 
one of the singularity. To show that the solutions W

n

represent genuine naked singularities, we need to extend them to the future

light 
one, that is to x = �1. Fortunately, su
h an extension 
reates no

problem be
ause an a-orbit shot ba
kwards from x = 1 
annot go singular

before rea
hing x = �1. This follows immediately from (12) by observing

that, in the interval �1 < x < 1,W (x) is 
on
ave down (resp. up) forW > 1

(resp. W < �1), hen
e W (x) remains bounded as x! �1

+

. Moreover, the

fun
tion Q(x) is negative and de
reasing near x = �1, thus lim

x!�1

+ Q(x)

exists whi
h implies in turn that 
 = lim

x!�1

+
W (x) exists. Having that,

the standard asymptoti
 analysis gives the following leading order behaviour

for x! �1

+

W (x) � 
+

3

2


(1� 


2

)(x+ 1) ln(x+ 1) : (30)

The singular logarithmi
 term in (30) 
an be eliminated by �ne-tuning the

shooting parameter a, however this is not expe
ted to happen for the solu-

tions W

n

(x) be
ause in their 
onstru
tion the freedom of adjusting a was

already used to tune away the singular behaviour for x > 1. We 
on
lude

that the self-similar solutions W

n

are C

0

at the future light 
one and are

analyti
 everywhere below it. The only (somewhat surprising) ex
eption is

the solution W

0

whi
h is analyti
 in the entire spa
etime.

4. Linear stability of self-similar solutions

In this se
tion we study the linear stability of self-similar solutions W

n

.

This analysis is essential in determining the role of self-similar solutions in

dynami
s. We restri
t attention to the interior of the past light 
one of the

point (T; 0) and de�ne the new time 
oordinate s = � ln

p

(T � t)

2

� r

2

.

Note that s ! 1 when t ! T , and the lines of 
onstant s are orthogonal

to the rays of 
onstant x. In terms of s and x, equation (5) be
omes (for

D = 5)

�

e

2s

x

2

� 1

(e

�2s

w

s

)

s

+ (x

2

� 1)w

xx

+ 3w(1 � w

2

) = 0 : (31)

Of 
ourse, this equation redu
es to (12) if w does not depend on s. In order

to determine the stability of self-similar solutions W

n

we seek solutions of

(31) in the form w(s; x) = W

n

(x) + v(s; x). Negle
ting the O(v

2

) terms we

obtain the linear evolution equation for the perturbation v(s; x)

�

e

2s

x

2

� 1

(e

�2s

v

s

)

s

+ (x

2

� 1)v

xx

+ 3(1� 3W

2

n

)v = 0 : (32)
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Substituting v(s; x) = e

(�+1)s

p

x

2

� 1 u(x) into (32) we get the eigenvalue

problem in the standard Sturm�Liouville form

�

d

dx

�

(x

2

� 1)

du

dx

�

� 3(1� 3W

2

n

)u =

�

x

2

� 1

u ; (33)

where � = ��

2

. Using the variable � =

1

2

ln(

x�1

x+1

) ranging from zero to

in�nity we transform (33) into the radial S
hrödinger equation

�

d

2

u

d�

2

+ V

n

u = �u ; V

n

= �

3(1� 3W

2

n

)

sinh

2

�

: (34)

The potential V

n

(�) has a typi
al �quantum me
hani
al� shape (see �gure 2)

with the asymptoti
s

V

n

(�) �

�

6=�

2

for �! 0 ;

�12 exp(�2�) for �!1 :

(35)

Note that the potential 
an be expressed in the form V

n

(�) = l(l + 1)=�

2

+

V

reg

n

(�) with l = 2, where the regular part V

reg

n

(�) is everywhere negative

and V

reg

n

(0)! �1 as n!1.
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V
1(
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λ=-16

Fig. 2. The potential for the perturbations around the self-similar solution W

1

.

The single bound state with energy � = �16 is indi
ated.

Both endpoints � = 0 and � = 1 are of the limit-point type, that is,

exa
tly one solution near ea
h point is square-integrable (admissible). Near

� = 0 the admissible solutions behave as u(�) � �

3

. For � ! 1 and � < 0

the admissible solutions behave as u(�) � e

���

(re
all that � =

p

��). All

� � 0 belong to the 
ontinuous spe
trum.
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Let u

n

k

(resp. �

n

k

) denote the kth eigenfun
tion (resp. eigenvalue) about

the solution W

n

. The numeri
ally generated spe
tra are shown in Table II.

TABLE II

The eigenvalues of the perturbations about the �rst �ve solutions W

n

obtained nu-

meri
ally. The pseudo-eigenvalue � = 0 is also in
luded. The last row 
orrespond-

ing to n = 1 was obtained by solving numeri
ally the trans
endental equation

(43).

n �

n

0

�

n

1

�

n

2

�

n

3

�

n

4

0 0

1 0 4

2 0 4 27.407

3 0 4 27.379 182.49

4 0 4 27.374 182.18 1214.5

. . . . . . . . . . . . . . . . . .

1 0 4 27.37319 182.1202 1210.917

We point out that although � = 0 is not a genuine eigenvalue, it is dis-

tinguished from the stri
tly positive part of the 
ontinuous spe
trum by

the fa
t that the 
orresponding non-square-integrable pseudo-eigenfun
tion,


alled the zero mode, is subdominant at in�nity. The existen
e of the zero

mode is due to the time translation symmetry, or in other words, the freedom

of shifting the blowup time T in (8). To see this, 
onsider the self-similar

solution with a shifted blowup time W

n

((T

0

� t)=r), where T

0

= T + ".

In terms of the original similarity variables s = � ln

p

(T � t)

2

� r

2

and

x = (T � t)=r, we have

W

n

�

T

0

� t

r

�

= W

n

(x+"e

s

p

x

2

� 1) = W

n

(x)+"e

s

p

x

2

� 1 W

0

n

(x)+O("

2

) ;

(36)

hen
e the perturbation generated by shifting the blowup time 
orresponds

to � = 0 and has the form

u

n

0

=

p

x

2

� 1 W

0

n

(x) = sinh

2

� W

0

n

(�): (37)

An alternative way of deriving this result is to take (sinh

2

� W

0

)

0

+ 3W (1�

W

2

) = 0, whi
h is (12) reexpressed in terms of �, di�erentiate it and 
ompare

with (34).

Sin
e by 
onstru
tion the solution W

n

(�) has n extrema, it follows from

(37) that the zero mode u

n

0

(�) has n nodes. This implies, by the standard

result from Sturm�Liouville theory, that the potential V

n

has exa
tly n neg-

ative eigenvalues, in agreement with the numeri
al results shown in Table II.
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We 
on
lude that the self-similar solution W

n

has exa
tly n unstable modes

(apart from the unphysi
al zero mode). In parti
ular, the fundamental so-

lution W

0

is linearly stable, whi
h makes it a 
andidate for the attra
tor.

The rest of this se
tion is a digression 
on
erning a striking regularity

whi
h an a
ute reader might have already noti
ed in Table II. Namely, the

third 
olumn of Table II indi
ates that for ea
h n > 0 the �rst eigenvalue

below the 
ontinuous spe
trum �

n

1

= �(�

n

1

)

2

is equal to �16 (with the

numeri
al a

ura
y of ten de
imal pla
es)! This puzzling numeri
al fa
t is


alling for an explanation. Clearly, it has something to do with the parti
ular

form of the nonlinearity sin
e, for instan
e, the analogous problem for self-

similar wave maps from 3 + 1 dimensional Minkowski spa
etime into the 3-

sphere does not have this property [4℄. We suspe
t that the problem has some

hidden symmetry, yet we 
annot ex
lude a possibility that the numeri
s is

misleading and the eigenvalues �

n

1

are not pre
isely equal but their splitting

is beyond the numeri
al resolution. Some insight into this puzzle 
an be

gained by analysing the limiting 
ase n ! 1. Re
all that W

n

(�) tends to

zero for any � > 0 as n ! 1, hen
e the sequen
e of potentials V

n

has the

following nonuniform limit

lim

n!1

V

n

(�) = V

1

(�) = �

3

sinh

2

�

: (38)

For the limiting potential V

1

the S
hrödinger equation (34) 
an be solved

exa
tly. The solution that is admissible at in�nity (whi
h as before is the

limit-point) is given by the asso
iated Legendre fun
tion of the �rst kind

u(�) = P

�

�

(
oth �); � = �

1

2

+ i

p

11

2

: (39)

Here � is one of the roots of �(� + 1) = �3; the se
ond root gives the

same solution be
ause P

�

�1=2+i�

(x) with real � is real and P

�

�1=2+i�

(x) =

P

�

�1=2�i�

(x).

As �! 0, the solution (39) behaves as

u(�) / �

1

2

sin

 

p

11

2

ln�+ Æ(�)

!

; (40)

so it is always admissible, independently of �. This means that � = 0 is

the limit-
ir
le point and, therefore, in order to have a well-de�ned self-

adjoint problem we need to impose an additional boundary 
ondition. In

the language of spe
tral theory su
h a 
ondition is 
alled a self-adjoint ex-

tension. The 
ontinuous part of the spe
trum is the same for all self-adjoint

extensions but the eigenvalues do depend on the 
hoi
e. In our 
ase the



1908 P. Bizo«

self-adjoint extension amounts to �xing Æ(�) � the phase of os
illations of

the eigenfun
tions for �! 0. The natural 
hoi
e is to require that the eigen-

fun
tions os
illate with the same phase as the zero mode, that is Æ(�) = Æ(0),

or equivalently

lim

�!0

n

P

0

�

(
oth �)u

0

(�)� P

0

�

0

(
oth �)u(�)

o

= 0: (41)

Note that under this 
ondition the following diagram 
ommutes

V

n

f�

n

k

g

V

1

f�

1

k

g

-

?

p

p

p

p

p

p

p

p

p

p

?

-

Substituting (39) into (41) and using the asymptoti
 expansion (for real �)

P

�

�1=2+i�

(
oth �) �

2

i�

� (i�)

p

2� � (1=2 + i� � �)

�

1=2+i�

+ 
.
. for �! 0; (42)

we obtain the quantisation 
ondition for the eigenvalues

arg

(

�

 

1

2

� i

p

11

2

!

�

 

1

2

+ i

p

11

2

+ �

k

!)

= k�; k 2N : (43)

This trans
endental equation has in�nitely many roots whi
h for k � 2


an be obtained only numeri
ally (see the last row in Table II). However,

for k = 1 the exa
t solution is �

1

= 4 be
ause (a

identally?) � (1=2 +

i

p

11=2 + 4) = �45 � (1=2 + i

p

11=2), as 
an be readily veri�ed using four

times the identity � (z+1) = z� (z). Thus, we showed that the least negative

eigenvalue of the limiting potential is equal to �16. Although this analysis

does not resolve the original puzzle why all �

n

1

are equal to 4, it shows at

least that 4 is the a

umulation point of this sequen
e.

The asymptoti
 distribution of eigenvalues for k ! 1 
an be derived

from (43) by using the formula for the asymptoti
 behaviour of the gamma

fun
tion for large z

� (� + z) �

p

2� e

(�+z�1=2) ln z�z

for jzj ! 1; (44)

whi
h yields

arg

(

�

 

1

2

+ i

p

11

2

+ �

!)

�

p

11

2

ln� for �!1: (45)
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Applying this to (43) one gets

�

k+1

�

k

� e

2�

p

11

for k !1 : (46)

This formula was useful is providing an initial guess in the numeri
al root

�nding pro
edure for equation (43) for large k.

5. Singularities in D = 5

Having learned about self-similar solutions, we are now prepared to un-

derstand the results of numeri
al studies, �rst reported in [7℄, of the Cau
hy

problem for the YM equation in �ve spa
e dimensions

w

tt

= w

rr

+

2

r

w

r

+

3

r

2

w(1 � w

2

) : (47)

The main goal of these studies was to determine the asymptoti
s of blowup.

Our numeri
al simulations were based on �nite di�eren
e methods 
ombined

with adaptive mesh re�nement. The latter were instrumental in resolving the

stru
ture of singularities developing on vanishingly small s
ales. We stress

that a priori analyti
al insight into the problem, in parti
ular the knowledge

of self-similar solutions was very helpful in interpreting the numeri
al results.

We solved equation (47) for a variety of initial 
onditions interpolating

between small and large data. A typi
al example of su
h initial data is a

Gaussian (ingoing or time-symmetri
) of the form

w(0; r) = 1�Ar

2

exp

�

��(r �R)

2

�

; (48)

with adjustable amplitude A and �xed parameters � and R. The global

behaviour of solutions is qualitatively the same for all families of initial

data and depends 
riti
ally on the amplitude A (or any other parameter

whi
h 
ontrols the �strength� of initial data). For small amplitudes the

solutions disperse, that is the energy is radiated away to in�nity and in any


ompa
t region the solution approa
hes the va
uum solution w = 1. This

is in agreement with general theorems on global existen
e for small initial

data [2℄. Heuristi
ally, this follows from the fa
t the for a small amplitude

the nonlinearity is dominated by the dispersive e�e
t of the linear wave

operator. For large amplitudes we observe the development of two 
learly

separated regions: an outer region where the evolution is very slow and a

rapidly evolving inner region where the solution attains a kink-like shape

whi
h shrinks in a self-similar manner to zero size in a �nite time T . The

kink is, of 
ourse, nothing else but the self-similar solution W

0

(

r

T�t

)

1

(see

�gure 3). We summarise these �ndings in the following 
onje
ture:

1

Throughout this se
tion we use the similarity variable � =

r

T�t

(rather than x) and

abuse the notation by writing W

n

(�) to denote

~

W

n

(�) =W

n

(x).
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Conje
ture 1 (On blowup in D = 5). Solutions of equation (47) 
orre-

sponding to su�
iently large initial data do blowup in �nite time in the sense

that w

rr

(t; 0) diverges as t % T for some T > 0. The universal asymptoti


pro�le of blowup is given by the stable self-similar solution:

lim

t%T

w(t; (T � t)r) = W

0

(r) : (49)
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Fig. 3. The upper plot shows the late time evolution of time symmetri
 initial data

of the form (48) with � = 10; R = 2, and A = 0:2. As the blowup progresses,

the inner solution gradually attains the form of the stable self-similar solution

W

0

(r=(T � t)). The outer solution appears frozen on this times
ale. In the lower

plot the res
aled solutions w(t; (T � t))r are shown to 
ollapse to the pro�le W

0

(r)

(solid line).
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We think that the basi
 me
hanism whi
h is responsible for the observed

asymptoti
 self-similarity of blowup 
an be viewed as the 
onvergen
e to the

lowest �energy� 
on�guration. To see this, let us rewrite (47) in terms of the

similarity variable � and the slow time � = � ln(T � t) to get

w

��

+w

�

+2�w

��

=(1� �

2

)

�

w

��

+

2

�

w

�

�

+

3

�

2

w(1 � w

2

) : (50)

In this way the problem of blowup was 
onverted into the problem of asymp-

toti
 behaviour of solutions for � ! 1. The natural �energy� fun
tional

asso
iated with this problem is

K(w) =

1

Z

0

�

�

2

w

2

�

+

3

2

(1� w

2

)

2

1� �

2

�

d� : (51)

K(w) has a minimum at the self-similar solution W

0

and saddle points with

n unstable dire
tions at solutions W

n

with n > 0. Sin
e the wave equation

(50) 
ontains a damping term re�e
ting an outward �ux of energy through

the past light 
one of the singularity, we suspe
t (but 
annot prove) that

K(w) de
reases with time. If so, it is natural to expe
t that solutions will

tend asymptoti
ally to the minimum of K(w).

We already know that solutions with small data disperse and solutions

with large data blow up. The question is what happens in between. Using

bise
tion, we found that along ea
h interpolating family of initial data there

is a threshold value of the parameter, say the amplitude A

�

, below whi
h the

solutions disperse and above whi
h a singularity is formed. The evolution

of initial data near the threshold was found to go through a transient phase

whi
h is universal, i.e. the same for all families. This intermediate attra
tor

was identi�ed as the self-similar solution W

1

. Having gone through this

transient phase, at the end the solutions leave the intermediate attra
tor

towards dispersal or blowup. This behaviour is shown in �gure 4 for the

time-symmetri
 initial data of the form (48).

The universality of the dynami
s at the threshold of singularity forma-

tion 
an be understood heuristi
ally as follows

2

. As we showed above, the

self-similar solution W

1

has exa
tly one unstable mode � in other words the

stable manifold of this solution has 
odimension one and therefore generi


one-parameter families of initial data do interse
t it. The points of inter-

se
tion 
orrespond to 
riti
al initial data that 
onverge asymptoti
ally to

W

1

. The marginally 
riti
al data, by 
ontinuity, initially remain 
lose to the

2

This heuristi
 pi
ture of the dynami
s near the threshold, borrowed from dynami
al

systems theory, has been �rst given in the 
ontext of Einstein's equation � see

Se
tion 6 and [12℄.
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Fig. 4. The dynami
s of time-symmetri
 initial data of the form (48) with ampli-

tudes that are �ne-tuned to the threshold of singularity formation. The res
aled

solution w(t; (T � t)r) is plotted against ln(r) for a sequen
e of intermediate times.

Shown (solid and dashed lines) is the pair of solutions starting with marginally 
rit-

i
al amplitudes A = A

�

� ", where A

�

= 0:144296087005405. Sin
e " = 10

�15

, the

two solutions are indistinguishable on the �rst seven frames. The 
onvergen
e to

the self-similar solution W

1

(dotted line) is 
learly seen in the intermediate asymp-

toti
s. The last two frames show the solutions departing from the intermediate

attra
tor towards blowup and dispersal, respe
tively.

stable manifold and approa
h W

1

for intermediate times but eventually are

repelled from its vi
inity along the one-dimensional unstable manifold (see

�gure 5). A

ording to this pi
ture the universality of the nearly 
riti
al

dynami
s follows immediately from the fa
t that the same unstable mode

dominates the evolution of all solutions. More pre
isely, the evolution of

marginally 
riti
al solutions in the intermediate asymptoti
s 
an be approx-

imated as

w(t; r) = W

1

(�) + 
(A)(T � t)

��

1

�1

v

(

�) + radiation; (52)

where v

1

is the single unstable mode with the eigenvalue �

1

= 4. The small


onstant 
(A), whi
h is the only vestige of the initial data, quanti�es an

admixture of the unstable mode � for pre
isely 
riti
al data 
(A

�

) = 0. The

time of departure from the intermediate attra
tor is determined

by the time t

�

in whi
h the unstable mode grows to a �nite size, i.e.,
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supercritical
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subcritical
evolution
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critical surface

critical
solution

p > p*
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p = p*

Fig. 5. A s
hemati
 phase spa
e pi
ture of the dynami
s at the threshold of singu-

larity formation.


(A)(T � t

�

)

��

1

�1

� O(1). Using 
(A) � 


0

(A

�

)(A � A

�

) and substitut-

ing �

1

= 4, we get T � t

�

� jA

�

�Aj

1=5

. Various s
aling laws 
an be derived

from this. For example, 
onsider solutions with marginally sub-threshold

amplitudes A = A

�

� ". For su
h solutions the energy density

e(t; r) =

w

2

t

r

2

+

w

2

r

r

2

+

3(1 � w

2

)

2

2r

4

(53)

initially grows at the 
entre, attains a maximum at a 
ertain time � t

�

and

then drops to zero. Substituting (52) into (53) we get that e(t; 0) � (T�t)

�4

,

and hen
e e(t

�

; 0) � "

�4=5

.

6. Conne
tion with 
riti
al phenomena in gravitational 
ollapse

The behaviour of solutions near the threshold of singularity formation de-

s
ribed above shares many features with 
riti
al phenomena at the threshold

of bla
k hole formation in gravitational 
ollapse. To explain these similari-

ties, we now brie�y re
all the phenomenology and heuristi
s of the 
riti
al

gravitational 
ollapse. Consider a spheri
al shell of matter and let it 
ol-

lapse under its own weight. The dynami
s of this pro
ess, modelled by

Einstein's equations, 
an be understood intuitively in terms of the 
ompeti-

tion between gravitational attra
tion and repulsive internal for
es (due, for

instan
e, to kineti
 energy of matter or pressure). If the initial 
on�gura-

tion is dilute, then the repulsive for
es �win� and the 
ollapsing matter will

rebound or implode through the 
entre, and eventually will disperse. On



1914 P. Bizo«

the other hand, if the density of matter is su�
iently large, some fra
tion

of the initial mass will form a bla
k hole. Criti
al gravitational 
ollapse o
-


urs when the attra
ting and repulsive for
es governing the dynami
s of this

pro
ess are almost in balan
e, or in other words, the initial 
on�guration is

near the threshold of bla
k hole formation. The systemati
 studies of 
riti-


al gravitational 
ollapse were laun
hed in the early nineties by the seminal

paper by Choptuik [11℄ in whi
h he investigated numeri
ally the 
ollapse of

a self-gravitating massless s
alar �eld.

Evolving initial data �ne-tuned to the border between no-bla
k-hole and

bla
k-hole spa
etimes, Choptuik found the following unforseen phenomena

near the threshold:

(i) universality: all initial data whi
h are near the bla
k hole threshold go

through a universal transient period in their evolution during whi
h

they approa
h a 
ertain intermediate attra
tor, before eventually dis-

persing or forming a bla
k hole. This universal intermediate attra
tor

is usually referred to as the 
riti
al solution.

(ii) dis
rete self-similarity: the 
riti
al solution is dis
retely self-similar,

that is it is invariant under dilations by a 
ertain �xed fa
tor 
alled

the e
hoing period.

(iii) bla
k-hole mass s
aling: for initial data that do form bla
k holes, the

masses of bla
k holes satisfy the power law M

bh

� "




, where " is the

distan
e to the threshold and 
 is a universal (i.e., the same for all

initial data) 
riti
al exponent. Thus, by �ne tuning to the threshold

one 
an make an arbitrarily tiny bla
k hole. Put di�erently, there is

no mass gap at the transition between bla
k-hole and no-bla
k-hole

spa
etimes.

What Choptuik found for the s
alar �eld, has been later observed in

many other models of gravitational 
ollapse, although the symmetry of the


riti
al solution itself was found to depend on the model: in some 
ases the


riti
al solution is self-similar (
ontinuously or dis
retely), while in other


ases the 
riti
al solution is stati
 (or periodi
). In the latter 
ase bla
k hole

formation turns on with �nite mass. These two kinds of 
riti
al behaviour

are referred to as the type II or type I 
riti
ality, respe
tively, to emphasise

the formal analogy with se
ond and �rst order phase transitions in statisti
al

physi
s. We refer the interested reader to [12℄ for an ex
ellent review of the

growing literature on 
riti
al gravitational 
ollapse.

The present understanding of 
riti
al behaviour in gravitational 
ollapse

is based on the same phase spa
e pi
ture as in �gure 5, that is, it is asso
iated

with the existen
e of a 
riti
al solution with exa
tly one unstable mode. This

pi
ture leads to some quantitative predi
tions. In parti
ular, in the 
ase of
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type II 
riti
al 
ollapse, an elementary dimensional analysis shows that the


riti
al exponent 
 in the power law M

bh

� "




is a re
ipro
al of the unstable

eigenvalue of the 
riti
al solution.

By now, the similarities between type II 
riti
al gravitational 
ollapse

and the dynami
s at the threshold of singularity formation in the 5 + 1 YM

equations should be evident. This analogy, together with similar results for

wave maps in 3+1 dimensions [5,13℄, shows that the basi
 properties of 
rit-

i
al 
ollapse, su
h as universality, s
aling, and self-similarity, �rst observed

for Einstein's equations, a
tually have nothing to do with gravity and seem

to be robust properties of super
riti
al nonlinear wave equations. The ob-

vious advantage of toy models, su
h as the one presented in this paper, is

their simpli
ity whi
h allowed to get a mu
h better analyti
 grip on 
riti
al

phenomena than in the 
ase of Einstein's equations; in parti
ular, it was

possible to prove existen
e of the 
riti
al solution. The only 
hara
teristi


property of type II 
riti
al 
ollapse whi
h so far has not found in simpler

models (besides, of 
ourse, the absen
e of bla
k holes whi
h are repla
ed by

singularities) is dis
rete self-similarity of the 
riti
al solution. It would be

very interesting to design a toy model whi
h exhibits dis
rete self-similarity

at the threshold for singularity formation be
ause this 
ould give us insight

into the origin of this mysterious symmetry.

7. Singularities in D = 4

In this se
tion we 
onsider the Cau
hy problem for the YM equation in

four spa
e dimensions

w

tt

= w

rr

+

1

r

w

r

+

2

r

2

w(1� w

2

): (54)

We begin by re
alling some fa
ts 
on
erning equation (54) whi
h are be

important in understanding the dynami
s of singularity formation. First,

we note that, in 
ontrast to D = 5, there are no smooth self-similar solution

in D = 4. This follows from the fa
t that in D dimensions the lo
al solutions

of equation (10) near the past light 
one behave as (1� �

2

)

D�3

2

, hen
e they

are not smooth if D is even (in parti
ular, they are not di�erentiable in

D = 4). Although su
h singular self-similar solutions do exist, they 
annot

develop from smooth initial data and therefore they are not expe
ted to

parti
ipate in the dynami
s.

Se
ond, D = 4 is the 
riti
al dimension in the sense that the energy (7)

does not 
hange under s
aling. This means that, even though the model is

s
ale invariant, a nontrivial �nite energy stati
 solution may exist

3

. In fa
t,

3

Another way of seeing this is to noti
e that only in D = 4 the YM 
oupling 
onstant

e

2

provides the s
ale of energy.
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su
h a stati
 solution is well known

W

S

(r) =

1� r

2

1 + r

2

: (55)

This is the instanton in the four-dimensional Eu
lidean YM theory. Of


ourse, by re�e
tion symmetry, �W

S

(r) is also the solution. Sin
e the model

is s
ale invariant, the solution W

S

(r) generates an orbit of stati
 solutions

W

�

S

(r) =W

S

(r=�), where 0 < � <1.

To analyse the linear stability of the instanton, we insert w(t; r) =

W

S

(r) + e

ikt

v(r) into (54) and linearise. In this way we get the eigenvalue

problem (the radial S
hrödinger equation)

�

�

d

2

dr

2

�

1

r

d

dr

+ V (r)

�

v = k

2

v; V (r) = �

2(1� 3W

2

S

)

r

2

: (56)

This problem has a zero eigenvalue k

2

= 0 whi
h follows from s
ale invari-

an
e. The 
orresponding eigenfun
tion (so 
alled zero mode) is determined

by the perturbation generated by s
aling

v

0

(r) = �

d

d�

W

�

S

(r)

�

�

�

�=1

= rW

0

S

(r) =

4r

2

(1 + r

2

)

2

: (57)

Sin
e the zero mode v

0

(r) has no nodes, it follows by the standard result

from Sturm�Liouville theory that there are no negative eigenvalues, and

eo ipso no unstable modes around W

S

(r). Thus, the instanton is marginally

stable. Note that the zero eigenvalue lies at the bottom of the 
ontinuous

spe
trum k

2

� 0, hen
e there is no spe
tral gap in the problem.

After these preliminaries, we return to the dis
ussion of the Cau
hy

problem for equation (54). For small energies the solutions disperse, in

agreement with general theorems. For large energies, at �rst sight the global

behaviour seems similar to the D = 5 
ase � as before, near the 
entre the

solution attains the form of a kink whi
h shrinks to zero size. However, this

similarity is super�
ial be
ause now the kink is not a self-similar solution

(as no su
h solution exists). It turns out (see �gure 6) that the kink has the

form of the s
ale-evolving instanton

w(t; r) �W

S

�

r

�(t)

�

; (58)

where a s
aling fa
tor �(t) is a positive fun
tion whi
h tends to zero as

t! T . We summarise these �ndings in the following 
onje
ture:
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Conje
ture 2 (On blowup in D = 4). Solutions of equation (54) with

su�
iently large energy do blow up in �nite time in the sense that w

rr

(t; 0)

diverges as t % T for some T > 0. The universal asymptoti
 pro�le of

blowup is given by the instanton. More pre
isely, there exists a positive

fun
tion �(t)& 0 for t% T su
h that

lim

t%T

u(t; �(t)r) = W

S

(r) : (59)
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Fig. 6. The upper plot shows the formation of a singularity for large initial data of

the form (48) with A = 0:5. The inner solution has the form of the s
ale-evolving

instanton W

S

(r=�(t)) with the s
ale fa
tor �(t) going to zero slightly faster than

linearly. In the lower plot the res
aled solutions are shown to 
ollapse to the pro�le

of the instanton W

S

(r) (solid line).
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The key question whi
h is left open in this 
onje
ture is: what determines

the evolution of the s
aling fa
tor �(t); in parti
ular, what is the asymptoti


behaviour of �(t) for t! T ? Numeri
al eviden
e shown in �gure 7 suggests

that the rate of blowup goes asymptoti
ally to zero, that is ( _= d=dt)

lim

t!T

�(t)

T � t

= � lim

t!T

_

� = 0 ; (60)

but it seems very hard to determine an exa
t asymptoti
s of �(t) from pure

numeri
s

4

.
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Fig. 7. Comparison of the numeri
ally 
omputed s
aling fa
tor divided by T�t (for

the same data as in �gure 6) with the analyti
 formula

�(t)

T�t

=

q

2

3

(� ln(T�t))

�1=2

.

Re
ently, an analyti
al approa
h to this problem has been suggested

in [15℄. Below we sket
h the main idea of this approa
h. Let

M � fW

S

(r=�)j� 2 R

+

g be a manifold of res
aled instantons (a one-

dimensional 
entre manifold). Assuming that a solution is in a neighbour-

hood ofM, we de
ompose it as

w = W

S

(�) + v(t; �); � = r=�(t): (61)

Here v represents a small deviation of the solution from M and � is the


olle
tive 
oordinate onM. To �x the splitting between these two parts we

4

This issue is also dis
ussed by Linhart and Sadun in [14℄.
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require that Pv = 0, where P is the proje
tion on M. Plugging (61) into

(54) we get (

0

= d=d�)

�

2

�v � 2�

_

�� _v

0

+ Lv +N(v) = �

�

��W

0

S

�

_

�

2

(�

2

W

00

S

+ 2�W

0

S

); (62)

where L is the linear perturbation operator about the instanton

L = �

�

2

��

2

�

1

�

�

��

�

2(1 � 3W

2

S

)

�

2

; (63)

and

N(v) =

6W

S

�

2

v

2

+

2

�

2

v

3

: (64)

It is 
lear from (62) that v = O(

_

�

2

), hen
e for v to de
ay to zero as t! T ,

the rate of blowup must go to zero as well. We stress this point to empha-

sise that the linear evolution of �(t), predi
ted for example by the geodesi


approximation, is in
onsistent with Conje
ture 2. Next, by proje
ting equa-

tion (62) on M and in the orthogonal dire
tion, we get a 
oupled system


onsisting of a nonhomogeneous wave equation for v and an ordinary dif-

ferential equation for �. Solving the �rst equation for v and plugging the

result into the se
ond equation, we obtain in the lowest order the following

modulation equation

�

�

� =

3

4

_

�

4

: (65)

From this we get the leading order asymptoti
s for t! T

�(t) �

r

2

3

T � t

p

� ln(T � t)

: (66)

As shown in �gure 7 this result is in rough agreement with numeri
s. There

are many possible sour
es of the apparent dis
repan
y. On the numeri
al

side there are dis
retisation errors, an error in estimating the blowup time,

or errors in 
omputing � from the data. On the analyti
al side, there might

be 
orre
tions to (66) 
oming from the bounded region expansion and, more

importantly, from the far �eld behaviour

5

. Finally, and in our opinion most

likely reason of dis
repan
y is that the solution shown in �gure 7 has not

yet rea
hed the truly asymptoti
 regime and 
onsequently the higher order


orre
tions to formula (66) are still signi�
ant.

5

The derivation of (65) is not quite straightforward be
ause of the presen
e of infrared

divergen
ies whi
h need to be regularised.
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The issue of blowup rate is 
losely related to the problem of energy 
on-


entration in the singularity. To explain this, we de�ne the kineti
 and the

potential energies at time t < T inside the past light 
one of the singularity

E

K

(t) = 6�

2

T�t

Z

0

w

2

t

rdr; E

P

(t) = 6�

2

T�t

Z

0

�

w

2

r

+

(1� w

2

)

2

r

2

�

rdr: (67)

Substituting (58) into (67) we obtain

E

K

(t) = 6�

2

_

�

2

T�t

�(t)

Z

0

W

0

S

2

rdr; E

P

(t) = 6�

2

T�t

�(t)

Z

0

�

W

0

S

2

+

(1�W

2

S

)

2

r

2

�

rdr:

(68)

Assuming (60), this implies that

lim

t!T

E

K

(t) = 0; lim

t!T

E

P

(t) = 16�

2

: (69)

Thus, the energy equal to the energy of the instanton gets 
on
entrated in

the singularity. This means that in the pro
ess of blowup the ex
ess energy

must be radiated away from the inner region as the solution 
onverges to

the instanton.

It is worth pointing out that the 
on
entration of energy is a ne
es-

sary 
ondition for blowup in the 
riti
al dimension. To see this, suppose

that the solution blows up at time T and assume for 
ontradi
tion that

lim

t!T

E(t) = 0. Then, by 
hoosing a su�
iently small " > 0 we 
an have

E(T � ") arbitrarily small. This implies, by 
ausality and global existen
e

for small energy data, that the solution exists globally in time, 
ontradi
ting

the assumption. For radial equations of the type

w

tt

= w

rr

+

1

r

w

r

+

f(w)

r

2

; (70)

a stronger result was proved by Struwe [16℄ who basi
ally showed that if the

solution of (70) blows up, then it must do so in the manner des
ribed in

Conje
ture 2. In this sense formation of singularities is intimately tied with

the existen
e of a stati
 solution.

Finally, we address brie�y the issue of the threshold of singularity forma-

tion. Using the te
hnique des
ribed in Se
tion 5, along ea
h interpolating

family of initial data we 
an determine the 
riti
al point separating blowup

from dispersal. However, in 
ontrast to the D = 5 
ase, we see no eviden
e

for the existen
e of an intermediate attra
tor in the evolution of nearly 
rit-

i
al data. This fa
t, together with a similar result for 2 + 1 dimensional
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wave maps [6℄ suggests that in the 
riti
al dimension the transition between

blowup and dispersal is not governed by any 
riti
al solution. We suspe
t

that the evolution of pre
isely 
riti
al initial data still has the form (58)

but the dynami
s of the s
aling fa
tor is di�erent than in (66). This be-

lief is based on the fa
t that in the evolution of marginally 
riti
al initial

data we 
an 
learly distinguish a transient phase during whi
h �(t) drops

very qui
kly and then, either rea
hes a minimum and starts growing (in the


ase of dispersal), or keeps de
reasing with the �normal� rate (in the 
ase of

blowup).

8. Con
lusions

There are two main lessons that we wanted to 
onvey in this survey.

The �rst lesson is that there are striking analogies between major evolu-

tion equations. In parti
ular, the me
hanism of blowup to a large extent

is determined by the 
riti
ality 
lass of the model. These analogies 
an be

used to get insight into hard problems (su
h as singularity formation for

Einstein's equations) by studying toy models whi
h belong to the same 
rit-

i
ality 
lass. This approa
h is in the spirit of general philosophy expressed

by David Hilbert in his famous le
ture delivered before the International

Congress of Mathemati
ians at Paris in 1900 [17℄: �In dealing with math-

emati
al problems, spe
ialisation plays, as I believe, a still more important

part than generalisation. Perhaps in most 
ases where we seek in vain the

answer to a question, the 
ause of the failure lies in the fa
t that problems

simpler and easier than the one in hand have been either not at all or in
om-

pletely solved. All depends, then, on �nding out these easier problems, and

on solving them by means of devi
es as perfe
t as possible and of 
on
epts


apable of generalisation.�

The se
ond lesson is 
on
erned with the interplay between numeri
al

and analyti
al te
hniques. A

urate and reliable numeri
al simulation of

singular behaviour is di�
ult and hard to assess. In order to keep tra
k

of a singularity developing on ex
eedingly small spatio-temporal s
ales, one

needs sophisti
ated te
hniques su
h as adaptive mesh re�nement. For these

te
hniques the 
onvergen
e and error analysis are la
king so extreme 
are

is needed to make sure that the 
omputed singularities are not numeri
al

artifa
ts. For this reason, in order to feel 
on�dent about numeri
s it is

important to have some analyti
al information, like existen
e of self-similar

solutions. Without a theory, simulations alone do not provide ample ev-

iden
e for the existen
e of a singularity. We believe that the intera
tion

between numeri
al and analyti
al te
hniques, illustrated here by the studies

of blowup, will be
ome more and more important in future as we begin to

atta
k more di�
ult problems.
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