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GRAVITATIONAL TURBULENT INSTABILITY OF AdS5
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We consider the problem of stability of anti-de Sitter spacetime in five
dimensions under small purely gravitational perturbations satisfying the
cohomogeneity-two biaxial Bianchi IX Ansatz. In analogy to spherically
symmetric scalar perturbations, we observe numerically a black hole for-
mation on the time-scale O(ε−2), where ε is the size of the perturbation.
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1. Introduction

Over the past nearly two decades, asymptotically anti-de Sitter (aAdS)
spacetimes have received a great deal of attention, primarily due to the
AdS/CFT correspondence which is the conjectured duality between aAdS
spacetimes and conformal field theories. The distinctive feature of aAdS
spacetimes, on which the very concept of duality rests, is a timelike confor-
mal boundary at spatial and null infinity, where it is necessary to specify
boundary conditions in order to define the deterministic evolution. For en-
ergy conserving boundary conditions, the conformal boundary acts as a mir-
ror at which massless waves propagating outwards bounce off and return to
the bulk. Therefore, the key mechanism stabilizing the evolution of asymp-
totically flat spacetimes — dispersion of energy by radiation — is absent in
aAdS spacetimes. For this reason, the problem of nonlinear stability of the
pure AdS spacetime (which is the ground state among aAdS spacetimes) is
particularly challenging.

A few years ago, we considered this problem in a toy model of the spher-
ically symmetric massless scalar field minimally coupled to gravity with a
negative cosmological constant in four and higher dimensions and gave ev-
idence for the instability of the AdS spacetime [1, 2]. More precisely, we
showed numerically that there is a large class of arbitrarily small perturba-
tions of AdS that evolve into a black hole on the time-scale O(ε−2), where
ε is the size of the perturbation. On the basis of nonlinear perturbation
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analysis, we conjectured that this instability is due to a resonant transfer
of energy from low to high frequencies or, equivalently, from coarse to fine
spatial scales, until eventually an apparent horizon forms.

Further studies of this and similar models confirmed and extended our
findings, and provided important new insights concerning the coexistence of
unstable (turbulent) and stable (quasiperiodic) regimes of evolution (see [3]
for a brief review and references).

The major downside of all the reported numerical simulations of AdS
instability was the restriction to spherical symmetry, so that no gravita-
tional degrees of freedom were excited. Nonetheless, the results of nonlinear
perturbation analysis of the vacuum Einstein equation without symmetry
assumptions [4] seem to indicate that the instability mechanism is present
for gravitational perturbations as well. To verify this expectation, in this pa-
per, we consider the vacuum Einstein equations with negative cosmological
constant in five dimensions within the cohomogeneity-two biaxial Bianchi IX
Ansatz, introduced originally in the context of critical collapse for asymp-
totically flat spacetimes [5]. This Ansatz provides a simple 1+1 dimensional
setting for analyzing stability of AdS5 (which, incidentally, happens to be
dimensionwise the most interesting case from the AdS/CFT viewpoint) un-
der purely gravitational perturbations. As expected, we observe a similar
instability phenomenon as in [1, 2]. In the remaining two sections, we de-
scribe the model and present numerical results.

2. Setup

We consider the vacuum Einstein equations with the negative cosmolog-
ical constant in five dimensions

Rαβ = − 4

`2
gαβ . (1)

Following [5], we assume the cohomogeneity-two biaxial Bianchi IX Ansatz

g =
`2

cos2x

(
−Ae−2δdt2 +A−1dx2 +

1

4
sin2x

(
e−2B

(
σ21 + σ22

)
+ e4Bσ23

))
,

(2)
where (t, x) ∈ R× [0, π/2) and A, δ, B are functions of (t, x). The angular
part of this metric is the SU(2)×U(1)-invariant homogeneous metric on the
squashed 3-sphere. Here, σk are left-invariant one-forms on SU(2) which in
terms of Euler angles (0 ≤ ϑ ≤ π, 0 ≤ ϕ,ψ ≤ 2π) take the form of

σ1 + iσ2 = eiψ(cosϑdϕ+ idϑ) , σ3 = dψ − sinϑdϕ . (3)

Note that if B = 0, the angular metric becomes the round metric on S3 and
the symmetry is enhanced to SO(4).
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For Ansatz (2), the Einstein equations (1) reduce to the following
1+1 dimensional system (hereafter, primes and overdots denote derivatives
with respect to x and t, respectively):

Ḃ = Ae−δP , Ṗ =
1

tan3x

(
tan3xAe−δQ

)′
− 4e−δ

3 sin2x

(
e−2B − e−8B

)
,

(4)

A′ = 4 tanx (1−A)− 2 sinx cosxA
(
Q2 + P 2

)
+

2(4e−2B − e−8B − 3A)

3 tanx
,

(5)

δ′ = −2 sinx cosx
(
Q2 + P 2

)
, (6)

Ȧ = −4 sinx cosxA2e−δQP , (7)

where we have introduced the auxiliary variables Q = B′ and P = A−1eδḂ.
The field B is the only dynamical degree of freedom which plays a role similar
to the spherical scalar field1. It is convenient to define the mass function

m(t, x) =
sin2 x

cos4 x
(1−A(t, x)) . (8)

From the Hamiltonian constraint (5), it follows that

m′(t, x) = 2

[
A
(
Q2 + P 2

)
+

1

3 sin2 x

(
3 + e−8B − 4e−2B

)]
tan3 x ≥ 0 . (9)

We want to solve system (4)–(6) for small smooth initial data with finite
total mass M = limx→π/2m(t, x). Smoothness at x = 0 implies that

B(t, x) = b0(t)x
2+O

(
x4
)
, δ(t, x) = O

(
x4
)
, A(t, x) = 1+O

(
x4
)
,

(10)
where we used normalization δ(t, 0) = 0 to ensure that t is the proper time
at the origin. The power series (10) are uniquely determined by the free
function b0(t). Smoothness at x = π/2 and finiteness of the total mass M
imply that (using ρ = x− π/2)

B(t, x) = b∞(t) ρ4 +O
(
ρ6
)
, δ(t, x) = δ∞(t) +O

(
ρ8
)
,

A(t, x) = 1−Mρ4 +O
(
ρ6
)
, (11)

1 If B = 0, the only solution is the Schwarzschild–AdS family, in agreement with the
Birkhoff theorem.
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where the free functions b∞(t), δ∞(t), and mass M uniquely determine the
power series. It follows from (11) that the asymptotic behavior of fields at
infinity is completely fixed by the assumptions of smoothness and finiteness
of total mass, hence there is no freedom of imposing the boundary data.

The pure AdS spacetime corresponds toB = 0, A = 1, δ = 0. Linearizing
around this solution, we obtain

B̈ + LB = 0 , L = − 1

tan3x
∂x
(
tan3x ∂x

)
+

8

sin2x
. (12)

This equation is the ` = 2 gravitational tensor case of the master equa-
tion describing the evolution of linearized perturbations of AdS spacetime,
analyzed in detail by Ishibashi and Wald [6]. The Sturm–Liouville opera-
tor L is essentially self-adjoint with respect to the inner product (f, g) =∫ π/2
0 f(x)g(x) tan3x dx. The eigenvalues and associated orthonormal eigen-
functions of L are (k = 0, 1, . . . )

ω2
k = (6 + 2k)2 ,

ek(x) = 2

√
(k + 3)(k + 4)(k + 5)

(k + 1)(k + 2)
sin2x cos4xP

(3,2)
k (cos 2x) , (13)

where P (a,b)
k (x) is a Jacobi polynomial of the order of k.

The eigenfunctions ek(x) fulfill the regularity conditions (10) and (11)
hence any smooth solution can be expressed as

B(t, x) =
∑
k≥0

bk(t)ek(x) . (14)

To quantify the transfer of energy between the modes, we introduce the
linearized energy

E =

π/2∫
0

(
Ḃ2 +B′2 +

8

sin2 x
B2

)
tan3 x dx =

∑
k≥0

Ek , (15)

where Ek = ḃ2k + ω2
kb

2
k is the energy of the kth mode.

3. Numerical results

We solve system (4)–(6) numerically for small smooth initial data and
the boundary conditions (10) and (11). We use the standard method of lines
with a fourth-order Runge–Kutta time integration and fourth-order spatial
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finite differences. The Kreiss–Oliger dissipation is added to eliminate high-
frequency instabilities. The scheme is fully constrained, that is the metric
functions A and δ are updated at each time step by solving the Hamiltonian
constraint (5) and the slicing condition (6). The momentum constraint (7)
is only monitored to verify the accuracy of computations. For the typical
initial data, the energy is rapidly transferred to small spatial scales. To
resolve these scales, we refine the entire spatial grid when a global spatial
error exceeds some prescribed tolerance level. We usually start on a grid
with 214 +1 points and allow for four levels of refinement. To feel confident
that the spatial scales are properly resolved, we validated our computations
by convergence tests.

The results presented below were generated from the Gaussian initial
data of the form of

B(0, x) = 0 , P (0, x) = ε

(
2

π

)3 512√
3
x2 exp

(
−4 tan2x/

(
π2σ2

))
(16)

with width σ = 1/16 and varying small amplitudes ε. A good indicator of
instability is the Kretschmann scalar at the origin

RαβγδR
αβγδ(t, 0) = 40 + 864Q′(t, 0)2 . (17)

For initially small narrow wave packets such as (16), this quantity oscillates
with a period nearly equal to π, while the amplitude of oscillations grows
exponentially. As shown in Fig. 1, the one-period maxima of the quantity
ε−2Q′(ε2t, 0) are almost independent of ε.

At the end of evolutions shown in Fig. 1, we observe the formation of an
apparent horizon which is signaled by A(t, r) dropping below a certain small
threshold (we take this threshold to be 2−7 on the N = 214 grid and then
divide it by two each time we increase the grid resloution by a factor two).
Since the computational costs of numerical simulations rapidly increase with
decreasing ε, we have not been able to determine the outcome of evolution
of smaller perturbations. Nonetheless, extrapolating the observed scaling
behavior, we conjecture that AdS5 is unstable against black hole formation
for a large class of arbitrarily small purely gravitational perturbations.

On a heuristic level, the mechanism of instability is the same as for
scalar perturbations, namely the turbulent cascade of energy from low to
high modes that is eventually cut-off by the formation of a black hole2.
To substantiate this claim, let us see how the energy of the perturbation
gets distributed over the modes in the course of evolution. To this end, in
Fig. 2, we depict the linear energy spectrum, as defined in (15). The range

2 We stress that this instability is not active for some perturbations. In particular,
there exist initial data for which the solutions are exactly time-periodic [7].
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of modes participating in the evolution is seen to increase very rapidly. Just
before collapse, the spectrum exhibits the power-law scaling E ∼ k−α, where
the exponent α ≈ 5/3 appears to be universal, i.e., independent of initial
data (for comparison, in the Einstein-scalar AdS collapse in five dimensions
α ≈ 2 [8]). This power-law spectrum reflects the loss od smoothness of the
collapsing solution.
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Fig. 1. Top: One-period maxima of Q′(t, 0)2 for the initial data (16) with three
relatively small amplitudes (note, however, that for these data Q′(0, 0)2 is much
bigger than the unperturbed Kretschmann scalar at the origin). Bottom: After
rescaling ε−2Q′(ε2t)2, the curves from the top panel nearly coincide.
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Fig. 2. Log–log plot of the linear energy spectra at three instants of time for the
initial data (16) with ε = 0.3. The fit at t ≈ 4808π/2 yields a power-law spectrum
Ek ∼ k−α with α ≈ 5/3.
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