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GLOBAL DYNAMICS OF A YANG-MILLS FIELD

ON AN ASYMPTOTICALLY HYPERBOLIC SPACE

PIOTR BIZOŃ AND PATRYK MACH

Abstract. We consider a spherically symmetric (purely magnetic) SU(2)
Yang-Mills field propagating on an ultrastatic spacetime with two asymptot-
ically hyperbolic regions connected by a throat of radius α. Static solutions
in this model are shown to exhibit an interesting bifurcation pattern in the
parameter α. We relate this pattern to the Morse index of the static solu-
tion with maximal energy. Using a hyperboloidal approach to the initial value
problem, we describe the relaxation to the ground state solution for generic

initial data and unstable static solutions for initial data of codimension one,
two, and three.

1. Introduction and setup

The evolution of a Yang-Mills field in a four-dimensional Minkowski spacetime
is rather uneventful; all solutions starting from smooth initial data at t = 0 remain
smooth forever [1] and decay to zero as t → ∞ [2, 3]. In a globally hyperbolic
four-dimensional curved spacetime the evolution can be more intricate: although
singularities cannot develop [4], there may exist nontrivial stationary attractors
giving rise to critical phenomena at the boundaries of their basins of attraction, as
was shown for the Schwarzschild background [5].

Here we consider the evolution of a spherically symmetric SU(2) Yang-Mills field
on an ultrastatic spacetime (M, g) with the manifold M = {(t, r) ∈ R

2, (ϑ, ϕ) ∈ S2}
and metric

(1) g = −dt2 + dr2 + α2 cosh2 r dω2 ,

where dω2 = dϑ2 + sin2ϑ dϕ2 is the round metric on the unit 2-sphere. The hyper-
surfaces t = const are three-dimensional asymptotically hyperbolic cylinders that
are symmetric under the reflection r → −r. The neck, r = 0, of this hyperbolic
wormhole is a minimal surface of area 4πα2. The Ricci scalar of (1) is equal to

R(g) = −6 + (2 + 2α−2) sech2 r.
We are interested in an SU(2) Yang-Mills field propagating on (M, g). The gauge

potential Aμ = Aa
μτa takes values in the Lie algebra su(2), where the generators

τa satisfy [τa, τb] = iεabcτc. In terms of the Yang-Mills field tensor, Fμν = ∇μAν −
∇νAμ + [Aμ, Aν ], the lagrangian density reads

(2) L = Tr
(
FαβFμνg

αμgβν
) √

−det(gμν).
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For the Yang-Mills potential we assume the spherically symmetric purely magnetic
ansatz

(3) A = W (t, r) η + τ3 cosϑdϕ , where η = τ1dϑ + τ2 sin ϑ dϕ ,

which gives the Yang-Mills field tensor

(4) F = ∂tWdt ∧ η + ∂rWdr ∧ η − (1 − W 2) τ3 dϑ ∧ sin ϑ dϕ .

Note that the vacuum state W = ±1 is two-fold degenerate. Inserting ansatz (4)
into (2) we get the reduced lagrangian density

(5) L = −1

2
(∂tW )2 +

1

2
(∂rW )2 +

(1 − W 2)2

4α2 cosh2 r
.

Hereafter it is convenient to define the constant � by �(� + 1) = α−2. Then, the
Euler-Lagrange equation derived from (5) reads

(6) ∂ttW = ∂rrW +
�(� + 1)

cosh2 r
W (1 − W 2) ,

and the associated conserved energy is

(7) E =
1

2

∫ ∞

−∞

(
(∂tW )2 + (∂rW )2 +

�(� + 1)

2 cosh2 r
(1 − W 2)2

)
dr .

The Yang-Mills equation (6) is a bona fide 1+1 dimensional semilinear wave equa-
tion for which it is routine to show that solutions starting at t = 0 from smooth
finite-energy initial data remain smooth for all future times.1

The goal of this paper is to describe the asymptotic behavior of solutions for
t → ∞. Due to the dissipation of energy by dispersion, solutions are expected to
settle down to critical points of the potential energy, i.e., static solutions. Before
studying the evolution, in the following two sections we describe the static sector
of the model.

2. Static solutions

Time-independent solutions W = W (r) of equation (6) satisfy the ordinary
differential equation

(8) W ′′ +
�(� + 1)

cosh2 r
W (1 − W 2) = 0 .

Due to the reflection symmetry W → −W , all solutions (except the reflection
invariant solution W∗ = 0) come in pairs. In the following, each pair ±W will be
counted as one solution. Besides W∗, the second constant solution is W0 = 1, which
is the ground state with zero energy. These two constant solutions will play the
key role in our analysis.2

1As we have mentioned above, global regularity holds for the Yang-Mills equation on any four-
dimensional globally hyperbolic spacetime [4]. However the proof of this fact is highly nontrivial
already in Minkowski spacetime [1].

2Note that, in contrast to the Yang-Mills model in a flat space, W∗ is a smooth, finite energy
solution; it is a hyperbolic analogue of Wheeler’s “charge without charge” configuration [6] with
two magnetic charges of opposite signs ±1 sitting at r = ±∞.
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We will show below that as � increases from zero, nonconstant static solutions
with finite energy bifurcate from W∗ at each positive integer value of �. These
solutions are either odd or even so it is sufficient to analyze them for r ≥ 0. The
odd solutions are parametrized by W ′(0) and the even solutions are parametrized by
W (0). Near r = ∞ these solutions belong to the one-parameter family of solutions

(9) W (r) = W∞ + O(e−2r) ,

which are analytic in the parameter W∞ and e−2r. Smooth solutions of (8) satis-
fying (9) will be referred to as regular solutions.

Theorem 1. Let n be a nonnegative integer. For 2n < � < 2n+2 there are exactly
n regular even solutions W2n(r) and for 2n + 1 < � < 2n + 3 there are exactly n
regular odd solutions W2n+1(r) (the subscript of W counts the number of zeros of
W (r) on the real line).

Proof. We consider only the odd solutions (the proof of existence of even solutions is
analogous). The odd solution with b = W ′(0) will be denoted by W (r, b). Without
loss of generality we assume that b ≥ 0. The proof, following the lines of the
shooting argument given in [7], proceeds in three steps:

Step 1 (a priori global behavior). It follows from (8) that W (r) cannot have a
maximum (resp. minimum) for W > 1 (resp. W < −1), so once W (r, b) leaves the
strip |W | < 1, it cannot reenter it. Suppose that |W (r, b)| < 1 for all r. We define
the functional

(10) Q(r) = cosh2 r W ′2 − �(� + 1)

2
(1 − W 2)2 .

From (8) we have

(11) Q′(r) = sinh(2r) W ′2 ,

hence Q(r) is increasing for r ≥ 0. It is easy to see that if Q(r0) > 0 for some r0,
then |W (r1, b)| = 1 for some r1 > r0. Thus, Q(r) < 0 for all r ≥ 0, in particular
Q(0) = 2b2 − �(� + 1) < 0. Together with (11) this implies that limr→∞ Q(r) ≤ 0
exists, and therefore limr→∞ Q′(r) = 0, which is equivalent to limr→∞ erW ′(r) = 0.
The existence of limr→∞ Q(r) and (10) imply in turn that W∞ := limr→∞ W (r)
exists. Concluding, the solution for which |W (r, b)| < 1 for all r has the desired
asymptotic behavior (9).

Step 2 (behavior of solutions for small b). Inserting W (r) = bw(r) into (8) and
taking the limit b → 0 we get

(12) w′′ +
�(� + 1)

cosh2 r
w = 0, w(0) = 0, w′(0) = 1 .

The solution of this limiting equation is given by the Legendre function

(13) wL(r) = tanh r 2F1

(
1 − �

2
,
� + 2

2
,
3

2
; tanh2 r

)
,

which oscillates n + 1 times around zero (i.e., has n + 1 zeros) for r > 0, where
2n + 1 is the smallest odd number less than �, and then diverges to (−1)n+1∞ (or
goes to (−1)n+1 if 2n + 3 = �). By continuity, for b small enough, W (r, b) behaves
in the same manner on compact intervals.
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Step 3 (shooting argument). We define the set

B1 = {b |W (r, b) grows monotonically to W (r0, b) = 1 at some r0} .

We know from Step 1 that the set B1 is nonempty because all solutions W (r, b)

with b >
√

�(� + 1)/2 belong to it. On the other hand, we know from Step 2 that
if � > 1, then the set B1 is bounded from below by a positive constant. Thus,
b1 = inf B1 is strictly positive. The solution W (r, b1) cannot touch W = 1 for a
finite r because the same would be true for nearby orbits, violating the definition
of b1. Therefore, |W (r, b)| < 1 for all r and hence, by Step 1, W (r, b1) is the desired
first regular odd solution with one zero. We denote it by W1.

Next, consider the solution W (r, b1−ε) for a small positive ε. From the definition
of b1 it follows that W (r, b1 − ε) attains a local maximum W (r0) < 1 for some r0.
It is not difficult to show that for sufficiently small ε the solution W (r, b1−ε), after
reaching the maximum at r0, decreases monotonically to W (r1) = −1 for some
r1 > r0 (we omit the proof of this fact because it is very similar to the analogous
proof given in [7]). This means that the set

B3 = {b |W (r, b) grows monotonically to a maximum at some r0 and

then monotonically decreases to W (r1, b) = −1 at some r1 > r0}
is nonempty. We know from Step 2 that if � > 3, then b3 = inf B3 is strictly
positive. By the same argument as above, the solution W (r, b3) stays in the strip
|W | < 1 for all r and gives the desired regular odd solution with three zeros. We
denote it by W3(r).

The subsequent solutions W2n+1(r) can be obtained by iterating the argument
as long as 2n + 1 < �. �

The first few solutions Wn computed numerically are shown in Figure 1.
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Figure 1. Static solutions Wn for � = 6.5. The r-axis is compact-
ified to the interval [−1, 1] by using tanh r.

We conclude this section with a few remarks concerning the properties of static
solutions.

Remark 1. Multiplying (8) by W and integrating by parts we get the virial identity

(14)

∫ ∞

−∞
W ′2dr = �(� + 1)

∫ ∞

−∞
W 2(1 − W 2) sech2 r dr.
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Inserting this into (7) gives for static solutions

(15) E =
�(� + 1)

4

∫ ∞

−∞
(1 − W 4) sech2 r dr .

This shows that the energies En := E(Wn) are bounded from above by the energy
E∗ := E(W∗) = �(� + 1)/2 (see Figure 2).
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Figure 2. Left panel: The bifurcation diagram showing a se-
quence of supercritical pitchfork bifurcations at integer values of
�. Right panel: The energies En are shown to bifurcate from the
parabola E∗ = �(� + 1)/2 at integer values of �. The bifurcation
points are marked with dots.

Remark 2. Multiplying (8) by W ′ and integrating by parts we get an identity

(16)

∫ ∞

−∞
tanh r sech2 r (1 − W 2)2 dr = 0 ,

which is trivially satisfied by odd and even solutions and suggests that nonsymmet-
ric solutions do not exist. However proving that is an open problem.

Remark 3. For large values of � one can obtain an analytic approximation of the
solution W1(r) as follows. Let y =

√
�(� + 1)r and W̄ (y) = W (r). Then, in the

limit � → ∞ equation (8) reduces to W̄ ′′+W̄ (1−W̄ 2) = 0. The separatrix solution

of this limiting equation W̄1(y) = tanh(y/
√

2) gives the approximation

(17) W1(r) 
 tanh

(√
�(� + 1)

2
r

)
for � � 1 .

Remark 4. The static energy

(18) E =
1

2

∫ ∞

−∞

(
W ′2 +

�(� + 1)

2 cosh2 r
(1 − W 2)2

)
dr

is an example of an energy functional with the following properties: a) it is invariant
under a discrete Z2 symmetry (here, the reflection W → −W ), b) the fixed point
of this symmetry (here, W∗) is a critical point with maximal energy, c) it satisfies
the Palais-Smale condition. Corlette and Wald conjectured3 in [8], using Morse

3Actually, this conjecture was not stated explicitly in [8], but it follows naturally from the
argument given there.
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2034 PIOTR BIZOŃ AND PATRYK MACH

theory arguments, that for such functionals the number of critical points (counted
without multiplicity) with energy below E(W∗) is equal to the Morse index of W∗
(i.e. the number of negative eigenvalues of the Hessian of E at W∗). We will show
below that when � < 1 the Morse index of W∗ is equal to 1 and, as � grows, it
increases by one at each integer value of �. Thus, according to the conjecture of
Corlette and Wald, for a given � there should be exactly n (besides W∗) critical
points of the energy functional, where n is the largest integer less than �. This is
in perfect agreement with Theorem 1, provided that there are no nonsymmetric
critical points.

3. Linearized perturbations

In this section we determine the linear stability properties of static solutions
Wn(r). This step is essential for understanding the role of static solutions in the
evolution. Following the standard procedure we seek solutions of equation (6) in
the form W (t, r) = Wn(r) + w(t, r). Hereafter, in the case of W∗ the subscript n
should be replaced by ∗. Neglecting quadratic and cubic terms in w, we obtain the
evolution equation for linear perturbations

(19) ∂ttw − ∂rrw + Vn(r) w = 0 , Vn(r) =
�(� + 1)

cosh2 r
(3W 2

n(r) − 1) .

Separation of time dependence w(t, r) = eλtv(r) yields the eigenvalue problem for
the one-dimensional Schrödinger operator

(20) Ln v := (−∂rr + Vn(r)) v = σ v, σ = −λ2 .

Since the potential Vn(r) is an even function of r, the eigenfunctions are alternately
even and odd. We claim that the operator Ln has exactly n negative eigenval-
ues, independently of �. For n = 0 this is obvious because the potential V0(r) =
2�(� + 1) sech2 r is everywhere positive. For n ≥ 1 we can obtain a lower bound
as follows. Consider the function vn(r) = cosh r W ′

n(r). Multiplying (8) by cosh2 r
and then differentiating, we find that Ln vn = −vn; hence vn is the eigenfunction
to the eigenvalue σ = −1. Since Wn(r) has (n−1) local extrema, the eigenfunction
vn(r) has (n − 1) zeros, which implies by the Sturm oscillation theorem that there
are exactly (n − 1) eigenvalues below −1. Consequently, the operator Ln has at
least n negative eigenvalues. Numerics shows that there are no eigenvalues in the
interval −1 < σ < 0, indicating that the above lower bound is sharp, but we have
not been able to prove that (see, however, Remark 5 below).

In the case of W∗ = 0 the potential V∗ = −�(�+1) sech2 r is the exactly solvable
Pöschl-Teller potential [9], which is known to have n + 1 negative eigenvalues σj =
−(�−j)2 for j = 0, 1, . . . , n, where n is the largest integer less than �. In particular,
for � < 1 there is only one negative eigenvalue. At each positive integer value of �
a new zero energy resonance emerges from the bottom of the continuous spectrum
and becomes a negative eigenvalue as � grows.

Remark 5. From the structure of the spectrum of perturbations around W∗ it
follows, using bifurcation theory, that at each positive integer value of � there is
a supercritical pitchfork bifurcation at which a pair of solutions ±Wn with n =
� is born. This gives an alternative “soft” argument for existence of solutions
Wn in some small intervals n < � < n + ε. In these intervals the solutions Wn
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YANG-MILLS FIELD ON AN ASYMPTOTICALLY HYPERBOLIC SPACE 2035

are guaranteed to have one unstable mode less than W∗, in agreement with our
conjecture above.

In order to understand the evolution in the neighbourhood of static solutions,
besides unstable modes, one needs to determine the quasinormal modes. They are
defined as solutions of the eigenvalue equation (20) with Re(λ) < 0 and the outgo-
ing wave conditions v(r) ∼ exp(∓λr) for r → ±∞. As the concept of quasinormal
modes is inherently related to the loss of energy by radiation, the unitary evolu-
tion (19) and the associated self-adjoint eigenvalue problem (20) do not provide
a natural setting for analysing quasinormal modes, both from the conceptual and
computational viewpoints. For this reason we postpone the discussion of quasi-
normal modes until the next section where a new nonunitary formulation will be
introduced.

4. Hyperboloidal formulation

We define new coordinates

(21) τ = t − log(cosh r) , x = tanh r .

Then metric (1) takes the form

(22) g = (1 − x2)−1 ĝ, ĝ = −(1 − x2)dτ2 − 2x dτdx + dx2 + α2 dω2 .

The conformal metric ĝ is diffeomorphic to the Nariai metric [10], which is a product
of the two-dimensional de Sitter metric and the round metric on the 2-sphere. It
has constant positive scalar curvature R(ĝ) = 2 + 2/α2. The manifold M is the
static patch of dS2 × S2 whose cosmological horizons (null hypersurfaces x = ±1)
correspond to null infinities of M. In (M, ĝ) the spacelike hypersurfaces τ =
const are three-dimensional cylinders R×S2. Note that the Yang-Mills equation is
conformally invariant in four dimensions, hence it takes the same form on (M, g)
and (M, ĝ). The hypersurfaces τ = const are “hyperboloidal”, that is, they are
spacelike hypersurfaces that approach the “right” future null infinity J+

R along
outgoing null cones of constant retarded time t−r and the “left” future null infinity
J+
L along outgoing null cones of constant advanced time t + r.
We recall that the hyperboloidal approach to the initial value problem was in-

troduced by Friedrich in his studies of asymptotically flat solutions of Einstein’s
equations [11]. More recently, this approach has been developed and applied by
Zenginoğlu [12,13], who emphasized its advantages over the traditional approaches
(see also [14]). Until now, as far as we know, the hyperboloidal approach has not
been used in the context of asymptotically hyperbolic spacetimes.

In terms of the coordinates (τ, x) equation (6) becomes4

(23) ∂ττW + 2x∂τxW + ∂τW = ∂x

(
(1 − x2)∂xW

)
+ �(� + 1)W (1 − W 2) .

The principal part of this hyperbolic equation degenerates at the endpoints x = ±1
to ∂τ (∂τ ± 2∂x)W , hence there are no ingoing characteristics at the boundaries
and consequently no boundary conditions are required or, for that matter, allowed.
This, of course, reflects the fact that no information comes in from the future null
infinities.

4Hereafter we abuse notation and use the same letter W for the dependent variable in coordi-
nates (t, r) and (τ, x).
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2036 PIOTR BIZOŃ AND PATRYK MACH

Multiplying (23) by ∂τW we obtain the local conservation law

(24) ∂τρ + ∂xf = 0 ,

where

ρ =
1

2

(
(∂τW )2 + (1 − x2)(∂xW )2 +

�(� + 1)

2
(1 − W 2)2

)
,(25)

f = x (∂τW )2 − (1 − x2)∂τW∂xW .(26)

Integrating the conservation law (24) over a τ = const hypersurface we get the
energy balance

(27)
dE
dτ

= −(∂τW (τ,−1))2 − (∂τW (τ, 1))2 ,

where

(28) E(τ ) =

∫ 1

−1

ρ dx

is the Bondi-type energy.5 Formula (27) expresses the radiative loss of energy
through future null infinities. Since the energy E(τ ) is positive and monotone
decreasing, it has a nonnegative limit for τ → ∞. It is natural to expect that this
limit is given by the energy of a static endstate of evolution.6 We thus see that
the hyperboloidal approach is ideally suited for studying the relaxation processes
which are governed by the dispersive dissipation of energy.

In the remainder of the paper we describe in detail the asymptotic behavior of
solutions to (23) for smooth, finite energy initial data. To this end, we first return to
the analysis of linearized perturbations and redo it in the hyperboloidal framework.
Substituting W (τ, x) = Wn(x) + w(τ, x) into (23) and linearizing, we obtain the
equation

(29) ∂ττw + 2x∂τxw + ∂τw = ∂x

(
(1 − x2)∂xw

)
+ �(� + 1)(1 − 3W 2

n) w ,

which for w(τ, x) = eλτu(x) yields the eigenvalue problem for the quadratic pencil
of linear operators

(30) (An + λ B + λ2I) u = 0 ,

where

An = −∂x

(
(1 − x2)∂x

)
+ �(� + 1)(3W 2

n(x) − 1), B = 2x∂x + 1 .

5Note that ∂τ = ∂t. Hence for time-independent fields the Bondi-type energy E is equal to the
standard energy E defined in (7).

6In order to turn this expectation into a proof, it would suffice to show that the ‘kinetic energy’
1
2

∫ 1
−1(∂τW )2 dx must tend to zero as τ → ∞.
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YANG-MILLS FIELD ON AN ASYMPTOTICALLY HYPERBOLIC SPACE 2037

Here An is the self-adjoint operator (corresponding to the operator Ln defined
in (20)), while the operator B is skew-symmetric. Thus, if λ is an eigenvalue,7

so is its complex conjugate λ̄. In this setting the quantization condition for the
eigenvalues amounts to the requirement that the eigenfunctions be smooth at the
endpoints x = ±1. Note that here, in contrast to the self-adjoint formulation
from section 3, both unstable and stable (quasinormal) modes are treated on equal
footing as genuine eigenfunctions.8

For constant solutions, W∗ = 0 and W0 = 1, one can solve the quadratic eigen-
value problem (30) using the power series method. In the case of W∗, inserting the
power series

(31) u(x) =

∞∑
j=0

cjx
j

into (30) we obtain the recurrence relation

(32) cj+2 =
(j + λ + � + 1)(j + λ − �)

(j + 2)(j + 1)
cj ,

where c0 = 1, c1 = 0 for even solutions and c0 = 0, c1 = 1 for odd solutions. Using
the ratio test and the Gauss convergence criterion it is easy to see that the function
defined by the power series (31) is smooth for |x| < 1, but it is not smooth at
x = ±1 unless the series is truncated for a finite j. The truncation condition gives
two sequences of eigenvalues:

(33) λ±
∗,j = −j − 1

2
± (� +

1

2
), j = 0, 1, . . . .

The corresponding eigenfunctions u±
n,j are even and odd polynomials of order j for

even and odd j, respectively. It follows from (33) that W∗ has one (even) unstable
mode (λ+

∗,0 = �, u+
∗,0 = 1), if � < 1, and as � increases, it picks up new unstable

modes at each integer value of �. Thus, for a given � there are exactly n+1 unstable
modes where n is the largest integer less than �.

In the case of W0 the recurrence relation is

(34) cj+2 =
λ2 + (2 + j)λ + j2 + j + 2�(� + 1)

(j + 2)(j + 1)
cj ,

and the truncation condition yields two sequences of eigenvalues:

(35) λ±
0,j = −j − 1

2
± 1

2

√
1 − 8�(� + 1), j = 0, 1, . . . .

All the eigenvalues have a negative real part (in agreement with the analysis in

section 3). An imaginary part is nonzero if � > (
√

6 − 2)/4.

7Mind the change of terminology: in the previous section σ = −λ2 was referred to as the
eigenvalue, while for the quadratic pencil λ is called an eigenvalue.

8To our knowledge, the advantages of the hyperboloidal foliations in the definition and anal-
ysis of quasinormal modes were first pointed out by Schmidt [15]. More recently, this idea was
implemented numerically in [5] and, in the case of asymptotically anti-de Sitter black holes, was
independently developed rigorously by Warnick in the framework of semigroup theory [16].
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The power series method is not applicable to the solutions Wn with n ≥ 1 because
they are not known in closed form. Hence in order to compute their spectrum of
perturbations one has to resort to numerical methods, for example the shooting
method9 (see [17]). In this case we shall adopt the following convention for the
ordering of eigenvalues:

λn,0 > · · · > λn,n−1 = 1 > 0 > Re(λn,n) > Re(λn,n+1) > . . . .

Summarizing, the following picture emerges from our analysis. For a given �
there are n + 2 static solutions W0, W1, . . . , Wn, W∗, where n is the largest integer
less that �. Due to the global-in-time regularity of solutions and monotone decrease
of the energy E , the static solutions are expected to be the only possible endstates
of evolution for any smooth, finite energy initial data. Since the solution Wn has n
unstable modes (or n + 1 in the case of W∗), only W0 is a generic attractor, while
the solutions Wn with n ≥ 1 are unstable attractors of codimension n (or n + 1
in the case of W∗). The analytic and numerical evidence supporting this picture
will be given in the following section where we describe in detail the dynamics of
convergence to the static attractors.

5. Relaxation to an equilibrium

In this section we solve equation (23) numerically for a variety of smooth, fi-
nite energy initial data and different values of �. We use the spectral Galerkin
method which appears to be ideally suited to the problem at hand. The implemen-
tation of this method is presented in detail in Appendix A. Our goal is to describe
quantitatively the process of relaxation to static solutions. We will discuss in turn
the relaxation to the generic attractor W0, the codimension-one attractors W∗ (for
� ≤ 1) or W1 (for � > 1), the codimension-two attractors W∗ (for 1 < � < 2) or W2

(for � > 2), and the codimension-three attractors W∗ (for 2 < � < 3) or W3 (for
� > 3).

5.1. Relaxation to W0. Generic initial data are expected to evolve towards the
static solution W0; our numerical results confirm this expectation. Figure 3 shows
the evolution for � = 7/2 of sample initial data

(36) W (0, x) = T1(x) + T4(x) + T5(x), ∂τW (0, x) = 0 .

Here and in the following, Tn(x) denotes the n-th Chebyshev polynomial. We
choose initial data as a simple combination of Chebyshev polynomials because they
can be easily implemented in the framework of our numerical method. Note that
the first two eigenfunctions around W0 and W∗ are given by the first two Chebyshev
polynomials:

u±
0,0 = u±

∗,0 = T0 ≡ 1 and u±
0,1 = u±

∗,1 = T1 ≡ x.

This fact will be very convenient in the following, however it should be remembered
that it is specific to our choice of the hyperboloidal coordinates (21).

9In the case of W1, the single unstable mode is even, so the least damped stable mode can
be easily obtained by solving the linearized equation (29) for some odd initial data and fitting an
exponentially damped sinusoid to w(τ, x0) at some x0.
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Figure 3. Relaxation to W0 for � = 7/2 and the initial data (36).

We find that the convergence to W0 is determined by the least damped mode
with the eigenvalue and eigenfunction

(37) λ+
0,0 = −1

2
+

1

2

√
1 − 8�(� + 1) , u+

0,0(x) = 1 ,

that is, for τ → ∞10

(38) W (τ, x) − W0 ∼ Re
(
A0e

λ+
0,0τ

)
+ subleading terms ,

where A is a constant depending on the initial data. This asymptotics can be
formally derived using the Galerkin approximation of the infinite-dimensional dy-
namical system (56). To see this, note that the solution W0 ≡ 1 corresponds to the
fixed point ak = δ0k of the system (56). Truncating this system at N = 2 we obtain

ä0 + ȧ0 − �(� + 1)a0 + �(� + 1)

(
a3
0 +

3

2
a0a

2
1

)
= 0,(39a)

ä1 + 3ȧ1 + (2 − �(� + 1)) a1 + �(� + 1)

(
3a2

0a1 +
3

4
a3
1

)
= 0.(39b)

For this system it is routine to show that the convergence to the fixed point (a0 =
1, ȧ0 = 0, a1 = 0, ȧ1 = 0) for τ → ∞ has the form

a0(τ ) ∼ 1 + Re
(
A0e

(− 1
2+

1
2

√
1−8�(�+1))τ

)
,(40a)

a1(τ ) ∼ Re
(
A1e

(− 3
2+

1
2

√
1−8�(�+1))τ

)
.(40b)

Increasing the order N of the Galerkin approximation does not affect the leading
order asymptotics of a0(τ ) and a1(τ ), and the increasingly faster fall-off of higher
coefficients can be calculated systematically term by term; therefore (38) follows.
The numerical verification of the asymptotic behavior (40) is shown in Figure 4.

10The notation f(τ) ∼ g(τ) for τ → ∞ means that f(τ) is “asymptotically equivalent” to g(τ),
i.e., limτ→∞ f(τ)/g(τ) = 1.
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Figure 4. Illustration of the asymptotic behavior (40). The plots
depict the quantities |a0(τ ) − 1| and |a1(τ )| for the solution with
initial data (36). In the oscillatory case � = 7/2 (left panel) both

quantities oscillate with the frequency 5
√

5/2 and fall off as e−τ/2

and e−3τ/2, respectively. In the nonoscillatory case � = 1/10 (right

panel) the quantities fall off as e(−5+
√
3)τ/10 and e(−15+

√
3)τ/10,

respectively. Note that the asymptotic falloff of |a0(τ )−1| becomes
visible only for τ � 25.

5.2. Codimension-one attractors. For odd initial data W0 cannot be an attrac-
tor (because it is even) and the role of an attractor is taken by W∗ (if � ≤ 1) or W1

(if � > 1). Each of these solutions has one unstable mode, but this mode is even
so it does not participate in the evolution of odd initial data. More precisely, odd
initial data lie on the stable manifold of W∗ if � < 1, the center-stable manifold of
W∗ if � = 1, and the stable manifold of W1 if � > 1. Below we describe in turn the
relaxation to these attractors.

5.2.1. Relaxation to W∗ for � ≤ 1. As follows from (33) and (32), the least damped
mode has the eigenvalue and eigenfunction

(41) λ+
∗,1 = � − 1 , u+

∗,0(x) = x .

For � < 1, in analogy to (38), we have for τ → ∞,

(42) W (τ, x) ∼ Aeλ
+
∗,1τ x + subleading terms .

As above, this asymptotic behavior can be formally derived from the Galerkin
approximation whose truncation to the first two odd modes reduces to

ä1 + 3ȧ1 + (2 − �(� + 1)) a1 + 12ȧ3 + 6a3

+
3

4
�(� + 1)

(
a3
1 + a2

1a3 + 2a2
3a1

)
= 0,(43a)

ä3 + 7ȧ3 + (12 − �(� + 1)) a3 +
1

4
�(� + 1)

(
a3
1 + 6a2

1a3 + 3a3
3

)
= 0.(43b)
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Solving this system asymptotically for τ → ∞ near the fixed point (a1 = ȧ1 = a3 =
ȧ3 = 0) we get

a1(τ ) ∼ Ae(�−1)τ ,(44a)

a3(τ ) ∼ −1

8

1 + �

1 + 4�
A3e3(�−1)τ .(44b)

Note that the leading fall-off of a3(τ ) is governed by the nonlinear term proportional
to a3

1 in equation (43b).
For � = 1 the eigenvalue λ+

∗,1 = �−1 is equal to zero.11 In this case the coefficient

of the term a1 in equation (43a) vanishes and the decay changes from exponential
to power-law, namely

a1(τ ) ∼ ±
√

5

2
τ−1/2,(45a)

a3(τ ) ∼ ∓
√

5

32
τ−3/2 .(45b)

This nongeneric case is somewhat surprising as it contradicts a naive expectation
that the decay is always exponential.12

Figure 5 depicts the relaxation to W∗ for sample odd initial data

(46) W (0, x) = 2T1(x) + T5(x), ∂τW (0, x) = 0 .

−3
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−1

0

1

2

3
τ = 3

τ = 0

τ = 4

τ = 1

τ = 10

τ = 2

−1.0 − 0.5 0.0 0.5 1.0

W

x

Figure 5. Relaxation to W∗ for � = 1/8 and odd initial data (46).

11In the framework of the self-adjoint problem (20) this corresponds to the presence of the
zero energy resonance at the bottom of the continuous spectrum.

12A similar power-law decay occurs for other integer values of � for specially prepared odd
initial data.
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Increasing the order of the Galerkin approximation does not affect the asymp-
totics (44) and (45). The numerical verification of these formulae is shown in
Figure 6.
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3
|

τ
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5

32

Figure 6. Illustration of the asymptotics (44) and (45). The
plots depict the coefficients |a1(τ )| and |a3(τ )| for the solution
with initial data (46). The left panel shows the case � = 1/8.
As expected, the coefficients |a1(τ )| and |a3(τ )| decay as Ae−7τ/8

and (3A3/32)e−21τ/8, with A ≈ 18.8. The right panel, using the
double logarithmic scale, shows the nongeneric case � = 1. To
make the predicted asymptotic power-law behavior of |a1(τ )| and

|a3(τ )| more visible, we superimpose the graphs of
√

5/(2
√

τ) and√
5/(32

√
τ
3
).

5.2.2. Relaxation to W1 for � > 1. The single unstable mode around W1 is even,
hence it is not present in the evolution of odd initial data. Therefore, in this case
we have

(47) W (τ, x) − W1(x) ∼ Ae−γ1τ sin(ω1τ + δ) u1,1(x) + . . . ,

where γ1 = −Re(λ1,1), ω1 = Im(λ1,1) and A, δ are constants. Figures 7 and 8 show
the numerical results confirming the asymptotic behavior (47) for � = 7/2 and the
initial data (46).

5.3. Higher codimension attractors. Thanks to the reflection symmetry x →
−x of equation (23) it is relatively easy to tune initial data to the stable manifolds
of static solutions with two and three unstable modes. For example, consider a
one-parameter family of even initial data

(48) W (0, x) = −1 + c T2(x), ∂τW (0, x) = 0 .

These data interpolate between the basins of attraction of solutions −W0 (for small
values of c, say c = 0) and W0 (for large values of c, say c = 1). Using bisection one
can determine numerically a critical value c∗ ∈ [0, 1] for which the initial data (48)
lie on a borderline between these basins of attraction. It is natural to expect that
such data will evolve to the least unstable even solution, i.e. W∗ if � < 2 or W2 if
� > 2. Numerically c∗ cannot be determined exactly, and the corresponding near-
critical solution approaches W∗ or W2 (depending on the value of �), stays in its
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Figure 7. Relaxation to W1 (depicted with the dashed line) for
� = 7/2 and the initial data (46).
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Figure 8. Time evolution of |W − W1| at x = 1 for the solution
depicted in Figure 7. The parameters of the quasinormal ringdown,
ω1 ≈ 4.197 and γ1 ≈ 0.277, agree with the values determined
independently using linear perturbation theory.

neighbourhood for some time and eventually is ejected along the one-dimensional
unstable manifold (see Figures 9 and 10). The dynamics of this process can be
approximated as follows:

(49) W (τ, x) ∼ A0(c)e
�τ + A2e

−(2−�)τ (1 − (2� − 1)x)

if � < 2, and

(50) W (τ, x) ∼ W2(x) + A0(c)e
λ2,0τ u2,0(x) + A2e

−γ2τ sin(ω2τ + δ) u2,2(x)

if � > 2, where γ2 = −Re(λ2,2) and ω2 = Im(λ2,2). For critical initial data A0(c∗) =
0, however, in practice there is always a small admixture of the unstable mode, and
therefore W∗ and W2 are only intermediate attractors whose lifetimes scale with c
as − 1

γ ln |c − c∗|, where γ = � in the case of W∗ and γ = λ2,0 in the case of W2.
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Figure 9. Snapshots from the evolution of a pair of near criti-
cal initial data (48) for c = c− = 0.599712304435598 and c =
c+ = 0.599712304435599. By continuous dependence on initial
data, these two solutions evolve for some time close together ap-
proaching the unstable attractor W2 (depicted with the dotted line)
and eventually tend to −1 and +1, respectively.
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Figure 10. The solutions corresponding to near critical param-
eters c±, depicted in Figure 9, are denoted by W±. The left and
right panels show the time evolution of W± − W2 and |∂τW±| at
x = 0, respectively. One can clearly distinguish three phases of
evolution: the approach to the unstable attractor W2 governed by
its fundamental quasinormal mode, the departure from W2 gov-
erned by its unstable mode, and finally relaxation to ±1 governed
by its fundamental quasinormal mode.

In a similar manner, one can prepare odd initial data lying on the stable manifold
of W∗ for 2 < � < 3 or W3 for � > 3.

Licensed to Max Planck fuer Gravitationsphysik. Prepared on Mon Jul 31 13:02:08 EDT 2017 for download from IP 194.94.224.254.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



YANG-MILLS FIELD ON AN ASYMPTOTICALLY HYPERBOLIC SPACE 2045

6. Final remarks

The study presented above is part of a bigger project which could be called “De-
signer PDEs.” In this project we play with domains of nonlinear PDEs (mainly wave
equations) in order to design toy models for studying various physical phenomena
(such as relaxation to equilibrium, weak turbulence, blowup, etc.) in the simplest
possible settings. The studies of such toy models not only help to understand the
underlying phenomena but, in addition, reveal interesting interactions between the
geometry of a domain and a nonlinearity. For example, the comparison of dynam-
ics of the Yang-Mills field on the asymptotically hyperbolic wormhole (described in
this paper) and the asymptotically flat wormhole (described in the parallel paper
[20]) is very instructive in showing how the late time behavior of waves is affected
by the asymptotic behavior and the conformal structure of spacetime.

Although equation (6) is very special, we believe that it is representative of a
larger class of models in the sense that many of its features, discussed above, are
structurally stable with respect to perturbations of the geometry of a domain. We
hope that our toy model will serve as a playground for developing new mathematical
methods (in particular, tools based on hyperboloidal foliations) for semilinear wave
equations on asymptotically hyperbolic spacetimes.

Appendix: Fourier-Galerkin method

To solve equation (23) we use a version of the spectral Fourier-Galerkin method.
The solution is expanded in the basis of Chebyshev polynomials of the first kind
{Tn}n=0,1,... as

(51) W (τ, x) =

∞∑
n=0

an(τ )Tn(x).

The choice of Chebyshev polynomials is suggested by the form of the Chebyshev
equation

(1 − x2)T ′′
n (x) − xT ′

n(x) + n2Tn(x) = 0.

The other obvious choice would be to work with Legendre polynomials. They
seem to be even better adjusted to our needs, since the linear part of the right
hand side of (23) has the form of the Legendre equation. The reason why we do
not work with Legendre polynomials is that the formulae expressing the products
of Legendre polynomials as their linear combinations are relatively complicated
(cf. [18,19]). The advantage of using Chebyshev polynomials is that the product of
two Chebyshev polynomials can be expressed as

Tm(x)Tn(x) =
1

2

(
Tm+n(x) + T|m−n|(x)

)
,

and thus the triple product has the form

Tl(x)Tm(x)Tn(x) =
1

4

(
Tl+m+n(x) + T|l−m−n|(x) + Tl+|m−n|(x)

+T|l−|m−n||(x)
)
.
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Using the above simple formula, we can expand the nonlinear term W 3 in (23) as
follows:

(W (τ, x))
3

=

∞∑
l,m,n=0

al(τ )am(τ )an(τ )Tl(x)Tm(x)Tn(x)

=
∞∑
n=0

wn(τ )Tn(x),(52)

where

w0(τ ) :=
1

4
(a0(τ ))

3
+

1

4

∞∑
m=0

a0(τ ) (am(τ ))
2

+
1

4

∞∑
m,n=0

(
am+n(τ ) + a|m−n|(τ )

)
am(τ )an(τ )(53)

and, for k > 0,

wk(τ ) :=
1

4

∞∑
m,n=0

(
ak−m−n(τ ) + ak−|m−n|(τ ) + ak+m+n(τ )

+ a−k+m+n(τ ) + ak+|m−n|(τ ) + a−k+|m−n|(τ )
)

am(τ )an(τ ).(54)

Here it is assumed implicitly that all coefficients with negative indices vanish iden-
tically.

In order to deal with the terms involving x∂xW and x∂τxW in (23) we recall
that

xT ′
n(x) =

⎧⎨
⎩

n
(
2
∑n/2

j=0 T2j(x) − T0(x) − Tn(x)
)

, n = 0, 2, 4, . . . ,

n
(
2
∑(n−1)/2

j=0 T2j+1(x) − Tn(x)
)

, n = 1, 3, 5, . . . .

Thus, defining

z0(τ ) :=
∞∑
j=0

2ja2j(τ )

and

zk(τ ) := kak(τ ) + 2

∞∑
j=1

(k + 2j)ak+2j(τ ), k > 0,

one can write

(55) x

∞∑
n=0

an(τ )T ′
n(x) =

∞∑
n=0

zn(τ )Tn(x).

Inserting expansion (51) into (23) and using (52) and (55), we obtain an infinite
system of ordinary differential equations of the form

(56) än + ȧn + (n2 − �(� + 1))an + zn + 2żn + �(� + 1)wn = 0

for n = 0, 1, . . . . In numerical computations we truncate this infinite system at
some prescribed n = N and retain the first N + 1 coefficients a0, a1, . . . , aN . The
truncated finite-dimensional dynamical system can be solved using standard nu-
merical methods. This procedure is usually referred to as the Galerkin method.
The initial data consist of a set of 2N + 2 values {an(0), ȧn(0)}n=0,...,N . In the
computations presented in section 5 we set N of the order of 30 to 50.
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Figure 11. A sample convergence test of our numerical scheme.
The abscissa shows the index N of the highest Chebyshev poly-
nomial used in the computation. The ordinate shows the square
of the L2([−1, 1]) norm of the difference between two solutions at
time τ = 1: the numerical solution computed with the given num-
ber of Chebyshev polynomials and the same solution computed
with N = 50 (this solution is denoted as W50). The initial data in
this example are given by (46).

The convergence of our spectral numerical scheme is, as expected, exponential,
at least in the cases that we have tested so far. An example of the convergence
properties (with respect to the increasing number on Chebyshev polynomials used
in the computation) is shown in Figure 11.

All numerical examples shown in this paper were computed with Wolfram Math-
ematica. A sample Mathematica notebook containing the implementation of the
above method is available from the “Mathematica notebook demo” link at
http://dx.doi.org/10.1090/tran/6807.
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