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Chapter 1

Introduction

Dirichlet energy E(u) = 1
2

∫

M
‖∇u‖2dVM and its stationary points are central

parts of many physical theories. We can generalize the Dirichlet energy to any
map between differentiable manifolds endowed with inner products. Station-
ary points of such functional are called harmonic maps in analogy to harmonic
functions, the main matter of this thesis are harmonic maps between spheres.

There is a powerful method available in the search for critical point of a func-
tional E called heat flow. The basic idea behind heat flow is to define a contin-
uous vector field on the domain of a functional, such that the functional value
decreases along its integral curves. Therefore, starting with any point as an
initial state we can deform it along the vector field to reach a local minimum
and thus, a stationary point. The heat flow realizes this idea by using an in-
verse gradient of E as a vector field in which case integral curves are formally
defined as solutions to

∂tF = −δE(F ), F (0) = F0,

where F0 is a starting point and t is a parameter along the integral curve.
The name “heat flow” is due to the fact that for the Dirichlet energy of the
form E(u) = 1

2

∫

M
‖∇u‖2dVM the heat flow turns out to be a heat equation.

Proceeding with this analogy we will henceforth refer to the parameter t as to
time. One expects that the flow will asymptotically converge to the stationary
point of E where the gradient is zero. This approach has been successfully used
by Eells and Sampson [3] to prove the existence of harmonic maps to manifolds
of non positive sectional curvature.

If there are two local minima of E, by the continuity of the vector field there
exist points which do not flow to either of them, which stands as a heuristic
argument in favor of the existence of a non-trivial saddle point of a functional.
There is however a major flaw in this reasoning – in some cases the quasilinear
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CHAPTER 1. INTRODUCTION 2

parabolic equations yield singularities in finite time. Actually in the particular
case of the maps between spheres one can prove using a theorem by Struwe
(Theorem 5) that the solution to the heat flow will blow up for some finite t.

In this thesis we analyse possible asymptotic states and the mechanism of the
blow-up produced by the heat flow for maps between k-dimensional spheres.
As the existence of harmonic maps between spheres has been proved by Bizoń
and Chmaj [1], and Corlette and Wald [2] we focus on dynamical aspects of
the heat flow such as stability analysis and the blow-up.
We start by defining the Dirichlet Energy and stating some basic facts about
the harmonic maps in general. Next, we present a symmetric ansatz to reduce
the problem of maps between spheres to maps between S1 and we proceed by
analysing the resulting quasilinear parabolic partial differential equation in one
dimension. The stability of harmonic maps is analysed in section 3.2 and the
blow-up mechanism is described in section 3.3.
Numerical results on solving the heat flow in the given ansatz are presented in
chapter 4 to confirm the analytical results.



Chapter 2

Preliminaries

2.1 Harmonic maps

Given two manifolds (M, g) and (N,h) we define a smooth map F : M → N .
To comply with the terminology used in literature, from now on we will call
M the domain manifold and N the target manifold. We shall construct the
simplest possible scalar, which involves the metric tensors of both (M, g) and
(N,h) and the mapping F .
Given the basis ei on TxM , the simplest scalar function on TxM ⊗ TxM is the
scalar product <,>x defined as

〈ei ⊗ ej , ek ⊗ el〉x = gikgjl. (2.1)

For two tensors τ and τ ′ from TxM ⊗ TxM we then have

〈τ, τ ′〉x = τ ijτ ′ij . (2.2)

Given the map F , we can construct the pullback F ∗h ∈ TxM ⊗ TxM and use
the above scalar product to contract g and F ∗h and therefore build up a scalar
function we intended

e(F ) :=
1

2
〈g, F ∗h〉x. (2.3)

This is the generalization of the Dirichlet energy density 1
2‖∇u‖2 for functions

u :M → R, indeed, for real function u we have

e(u) =
1

2
〈g, u∗1〉 = 1

2
gij∂iu∂ju =

1

2
‖∇u‖2. (2.4)

Definition 1. We say that a map F is regular if the corresponding Dirichlet
energy density is finite

e(F ) <∞. (2.5)

3



CHAPTER 2. PRELIMINARIES 4

Integrating e(F ) over M , we obtain the Dirichlet energy of the mapping F

E(F ) =

∫

M

e(F )dVM . (2.6)

By defining a functional on the space of maps M → N we distinguish a class
of maps for which the functional is extremalized. Depending on the domain
manifold, the extrema of (2.6) have different names in literature: harmonic
maps if the domain is Riemannian manifold, or wave maps if the domain is a
Lorentzian manifold.

Remark 1. Dirichlet energy of any map from a Riemannian manifold to a
Riemannian manifold is non-negative.

Using local coordinate charts xa on M and FA on N we can write (2.6) as

E(F ) =
1

2

∫

M

hAB(F )
∂FA

∂xa
∂FB

∂xb
gabdVM . (2.7)

It is convenient to introduce the so called tension field

τ(F )C = ∆gF
C + ΓCAB(h)

∂FA

∂xa
∂FB

∂xb
gab, (2.8)

where ∆g is the Laplace-Beltrami operator onM and ΓCAB(h) is the Christoffel
symbol of the Levi-Civita connection on N . The set of partial differential
equations which the critical points of (2.7) has to satisfy can then be stated as

τ(F )C = 0. (2.9)

From now on we shall assume that both the domain and the target manifolds
are Riemannian and in consequence the above set of semi-linear partial differ-
ential equations is elliptic.

The problem of existence of nontrivial solutions to (2.9) in general is still open,
but there is a variety of partial results starting from the classical theorem:

Theorem 1 (Eells-Sampson [3]). If N is compact and has non-positive sec-
tional Riemannian curvature, then every homotopy class of maps M → N
contains a harmonic map whose energy is an absolute minimum in the given
homotopy class.

Remark 2. One can also easily verify that the identity map id : M → M is
a harmonic map, regardless of the choice of M , by substituting FA = xA into
(2.9). The energy density of the identity map is e(id) = dim(M)/2.

The following remark can be also proved easily.

Remark 3. Given two harmonic maps F1 :M1 → N1 and F2 :M2 → N2, the
map F : M1 ×M2 → N1 × N2 of the form F ((x1, x2)) = (F1(x1), F2(x2)) is
also harmonic.

After this very brief introduction to harmonic maps we proceed to the problem
to which this thesis is devoted.
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2.2 Harmonic maps for F : S
k → S

k

General properties

From now on we shall set both the domain and target manifolds to Sk. We
choose the coordinates on the domain sphere as

xa = (ψ, θ), (2.10)

where ψ ∈ (0, π) is the longitudal angle with south pole at ψ = 0 and θ is
the set of coordinates on Sk−1 – the equator of Sk. Analogously we introduce
coordinates (Ψ,Θ) on the target sphere in which the map F takes the form

FA(ψ, θ) = (Ψ,Θ). (2.11)

The metric tensors for the given coordinate frames are

domain: ds2 = dψ2 + sin2 ψds2
∣

∣

Sk−1 (2.12)

target: dS2 = dΨ2 + sin2 ΨdS2
∣

∣

Sk−1 . (2.13)

Solving equations (2.9) without any further assumptions presents an impossible
task, therefore in section 2.2 we introduce a simple symmetric ansatz. Still
without any simplifications we can state the following.

Theorem 2. For k ≥ 3 and any map F : Sk → Sk there is a map within the
same homotopy class of arbitrary small Dirichlet energy.

Proof. The proof is based on the fact that on a sphere there exists a one
parameter group of conformal maps, which in the coordinates (2.10) have the
form

ψA = 2arctan(eA tan(ψ/2)). (2.14)

The above conformal map can be depicted as dragging the whole sphere along
the longitudal coordinates in the direction of one of its poles (for A large, this
would be the north pole). We define the map FA to be the composition

FA = F ◦ ψA. (2.15)

As ψA leaves the points ψ = 0 and ψ = π unchanged, FA has the same
homotopy degree as F . Due to the conformal properties of the map ψA we
obtain the following energy density of FA

e(FA)ψ =e(F )ψA
ρ2A, ρA =

1

coshA− cosψ sinhA
, (2.16)

where e(F )ψ is the energy density of F at point ψ. The map F is regular, hence
e(F )ψA

is bounded by its maximal value C(F ) = maxψ (e(F )ψ), therefore

e(FA)ψ ≤ C(F )ρ2A. (2.17)
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Assuming k ≥ 3, the Dirichlet energy of FA can be bounded by

E(FA) =

∫

Sk

e(FA)dVSk

≤ C(F )V (Sk−1)

∫ π

0

ρ2A sink−1 ψdψ

≤ C(F )V (Sk−1)max
ψ

(sink−3 ψ)

∫ π

0

ρ2A sin2 ψdψ

≤ C1(F, k)
1

1 + coshA
,

(2.18)

which can be made arbitrary small by choice of sufficiently large |A|.

Harmonic map ansatz

We simplify our problem by assuming that Θ = θ and Ψ = f(ψ) so the map F
takes the form

F : (ψ, θ) → (f(ψ), θ), (2.19)

which leaves us with one function as a degree of freedom. The given setup
has been introduced in [3] and it is based on an idea that, after removing the
poles, Sk can be treated as (0, π)× Sk−1, for which we can use remarks 2 and
3 with F1 = f and F2 = id.

For F to be continuous, we require that

lim
ψ→0

f(ψ) = nπ, lim
ψ→π

f(ψ) = mπ. (2.20)

Moreover, closing the domain of ψ will not have any implications as long as F
is regular so we can drop the limits from (2.20)

f(0) = nπ f(π) = mπ. (2.21)

The number n−m stands for the homotopy degree of a map.

The Dirichlet energy of the considered map has now a more transparent form

E(f) =
1

2

∫ π

0

(

f ′2 + (k − 1)
sin2 f

sin2 ψ

)

sink−1 ψdψ, (2.22)

where we changed the argument of E from F to f as effectively it is a functional
of f and we dropped the volume term V (Sk−1) which has no qualitative impact
on the behaviour of the system. By the definition 1, the map f is regular if

e(f) =
1

2

(

f ′2 + (k − 1)
sin2 f

sin2 ψ

)

<∞. (2.23)
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Critical points of E(f) are solutions to the corresponding Euler-Lagrange equa-
tion

1

sink−1 ψ

(

sink−1 ψf ′
)′ − (k − 1)

2

sin 2f

sin2 ψ
= 0. (2.24)

with the boundary values

f(0) = nπ, f(π) = mπ. (2.25)

The equation (2.24) has trivial solutions f = nπ of homotopy degree zero for
which E(f) attains absolute minimum: E(nπ) = 0. By remark 2, the identity
map f = ψ+nπ is also the solution but of the homotopy degree one. Hereafter
we set n = 0 without loss of generality. By the nontrivial Z2 symmetry (the
antipodal reflection)

f → f̄ = π − f, E(f) → E(f̄) = E(f), (2.26)

every possible critical point will have its partner of the same homotopy degree.
This is true unless f is invariant under (2.26), but the only such case is fe = π/2
which is not continuous thus not harmonic. (TODO: it does however play an
important role and is described in grater detail in appendix). To be consistent
with [1] we shall denote the constant and identity solutions as

f0 = 0 f1 = ψ. (2.27)

These, are the only solutions to (2.24) known in the closed form. More detailed
analysis of (2.24) is contained in [1] and [2], where the infinite family of regular
solutions for 3 ≤ k ≤ 6 was found. Following the notation in [1], we denote
the solutions as fn, where n ∈ N0. The parametrization by n is motivated by
the property that fn has exactly n intersections with π/2 and n− 1 extrema.
Each of fn is of homotopy degree zero for n even or one for n odd and stays
inside the square [0, π]× [0, π]. To be consistent with (2.27) we set fn(0) = 0.
The first few such harmonic maps are depicted in figure 2.1. From [1] it also
follows that the solutions obey the following parity relation

fn(ψ) = (−1)nfn(π − ψ). (2.28)

In [2] the authors proved that fn has index n (i.e. there are n negative eigen-
values of the Hessian of the energy). From the last statement it follows that
there are no local minima of E(f) apart from f0. As we will need the following
property later on we introduce it as the theorem.

Theorem 3 (Wald, Corlette [2]). There are no local minima of E(f) apart
from f = nπ.
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Harmonic maps between spheres

f1 f2

f3 f4

0

π/2

π

-10 -5 0 5 10

f n
(ψ

)

ln(tan(ψ/2))

0

π/2

π

-10 -5 0 5 10

f n
(ψ

)

ln(tan(ψ/2))

f5 f6

Figure 2.1: The first six non-trivial harmonic maps between spheres (solutions
to (2.24)). ln(tan(ψ/2)) scale of the abscissa is due to the fact that each fn is
steeper near the boundaries.

Proof. This can also be proved by showing that for each n > 0, fn there is at
least one direction v for which the Hessian is negative

δ2E(fn)(v, v) =

∫ π

0

(

v′2 + (k − 1)
cos 2fn

sin2 ψ
v2
)

sink−1 ψdψ

= (v,Lnv),
(2.29)

Lnv = − 1

sink−1 ψ

(

sink−1 ψv′
)′
+ (k − 1)

cos 2fn

sin2 ψ
v. (2.30)

It turns out that the conformal Killing on Sk field

K = sinψ
∂

∂ψ
(2.31)

related to (2.14) generates such v, namely for v = sinψf ′n(ψ) by (A.2) we have

Lnv = (2− k)v (2.32)

δ2E(fn)(v, v) = (v,Lnv) = (2− k)‖v‖2 < 0. (2.33)

This construction does not apply for n = 0 in which case v = 0.



Chapter 3

Gradient flow

3.1 Heat flow

We can approach the problem of existence and the properties of critical points
of a functional in several ways. For example in one dimensional case one can
prove the existence of solutions to Euler-Lagrange equations using some ODE
techniques, but this rarely gives insight into the geometry underlying the func-
tional. Another more sophisticated way is to analyse the level sets of the
functional and use the infinite dimensional variant of the Morse theory to ob-
tain critical points as it has been done e.g. in [2]. Finally, there is a powerful
technique called the heat flow, which consists of defining the flow, which moves
along the gradient lines of the functional in the direction of the negative gra-
dient.

The intuition behind the heat flow is that, if it exists for all times, it will push
the solution into a minimum of the functional (if the functional is bounded
from below). This approach is especially useful in finding a harmonic map of
a given degree, because the degree is conserved during the flow.
The formal setup for the heat flow of the Dirichlet energy (2.7) is

∂tF
A = −δE(FA) = τ(F )A,

F
∣

∣

t=0
= F0

(3.1)

where

τ(F )C = ∆gF
C + ΓCAB(h)

∂FA

∂xa
∂FB

∂xb
gab. (3.2)

By our assumption on the domain and the target, (3.1) is the set of quasi-linear
parabolic PDE’s. Using (3.1) we get

dE

dt
= −

∫

M

∂tFA∂tFBh
ABdVM ≤ 0 (3.3)

9
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with dE/dt = 0 if and only if F is harmonic. The flow (3.1) therefore reduces
the energy and asymptotically tends to a critical point of E.

The question if there exists a harmonic map in the same homotopy class as
the initial data F0 is thus reduced to the question of existence of a solution of
(3.1) for all t which is non singular as t→ ∞. This method was used in [3] to
prove Theorem 1, which now can be reformulated in the following form:

Theorem 4 (Eells-Sampson [3]). If N is compact and has non-positive sec-
tional Riemannian curvature, then for every F0 the solution to (3.1) exists for
all times and converges to the minimizing harmonic map as t→ ∞.

Unfortunately the technique of heat flow is not always so successful – the
solutions to (3.1) are not guaranteed to exist for arbitrary large times. Actually,
there is criterion which guarantees that the solution will cease to exist at some
time T :

Theorem 5 (Struwe [8]). For any time T > 0 there exists a constant ǫ =
ǫ(T ) > 0 such that for any map F0 : M → N which is not homotopic to a
constant and satisfies E(F0) < ǫ the solution F to (3.1) must blow up before
time 2T .

In the case whenM has non-positive Riemannian curvature the theorem is still
true but empty, because within a given homotopy class, the smooth harmonic
map attains the global minimum which is greater than the constant ǫ(T ), thus
no initial data can fulfill the criterion E(F0) < ǫ.

Heat flow for Sk → Sk

From this point we will assume that the map F : Sk → Sk satisfies the ansatz
(2.19) and we shall consider the functional E(f) as defined in (2.22) as a base
for (3.1). Applying the heat flow to (2.22) we obtain the following initial
boundary problem

ft =
1

sink−1 ψ

(

sink−1 ψf ′
)′ − (k − 1)

2

sin 2f

sin2 ψ
,

f(0, ψ) = g(ψ),

f(t, 0) = g(0) = 0 f(t, π) = g(π) = mπ.

(3.4)

The integer m is equal to the topological degree of the map. By (3.3) the
energy decreases

dE

dt
= −

∫ π

0

f2t sin
k−1 ψdψ < 0 (3.5)

unless f is a stationary point of E(f). By Theorem 3 the only point to which
the flow can converge starting from generic initial data is the constant map
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f = nπ for which the energy is zero. The flow will thus reduce the energy
from E(g) to an arbitrary small value. If the initial data is not homotopic
to a constant, Theorem 5 comes into play, which combined with theorem 3
guarantees that the blow-up will occur. Moreover, by the numerical evidence,
even if the boundary values are of the form g(0) = g(π) = 0 the blow-up can
occur if initial data lie in the basin of attraction of f = π.

The flow (3.4) conserves the parity of g, namely if

g(ψ) = ±g(π − ψ) (3.6)

then at any given time t ≥ 0 we have

f(t, ψ) = ±f(t, π − ψ). (3.7)

Our aim is to make the flow converge to one of the stationary points of E, which
we know to have the parity specified by (2.28). We will henceforth denote by
g+ and g− initial data obeying

g+(ψ) = g+(π − ψ), g−(ψ) = −g−(π − ψ) (3.8)

which evolve in the subspaces H+ and H− defined by

H± = {f(t, ψ)| f(t, ψ) = ±f(t, π − ψ)}. (3.9)

We also remark that

f2n ∈ H+, f2n+1 ∈ H−. (3.10)

f0 is the global energy minimizer in H+ and f1 is the global energy minimizer
in H−. The energy minimizing property of f0 is a straightforward, the case
of f1 being the energy minimizer for H− is not that obvious but follows from
the Morse analysis made in [2]. Generic initial data with suitable boundary
conditions in any of those subspaces will converge to one of their respective
ground states unless blow-up occurs. We will discuss the linear stability of the
ground states f0 and f1 in the following section.

3.2 Stability of harmonic maps

As we know already, f0 is the global minimum of the Dirichlet energy and
we expect it to be linearly stable. Also f1 should turn out to be linearly
stable under antisymmetric perturbations, and unstable under the symmetric
ones due to theorem 3 and (3.7). The linear stability can be approached by
determining the eigenvalues of the Hessian δ2E(fn) introduced in (2.29) which
corresponds to solving the eigenproblem
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Lnv = λv, (3.11)

Lnv = − 1

sink−1 ψ

(

sink−1 ψv′
)′
+ (k − 1)

cos 2fn

sin2 ψ
v. (3.12)

The Hilbert space for this problem is H = L2([0, π], sink−1 ψdψ). If we perturb
fn in the direction of v, the perturbed state will evolve as

f = fn + e−λtv (3.13)

which follows from linearizing (3.4) around fn.

By fn(0) = 0, the equation (3.11) near ψ = 0 takes the form

v′′ +
k − 1

ψ
v′ − k − 1

ψ2
v = 0. (3.14)

We obtain the indicial equation by substituting v(ψ) = ψγ obtaining

γ(γ − 1) + (k − 1)γ − (k − 1) = 0 (3.15)

with the solutions

γ = 1 or γ = 1− k, (3.16)

of which only the first one corresponds to v ∈ H. The analogous asymptotic
behaviour can be derived at ψ = π where also only one solution is in H. We

will denote the m-th eigenvalue of Ln as λ
(n)
m and the associated eigenvectors

as v
(n)
m with m ∈ N0. The eigenvalues are ordered as follows

λ
(n)
0 < λ

(n)
1 < λ

(n)
2 < . . . . (3.17)

From the fact that Ln is symmetric under ψ → π−ψ (by (2.28)), it follows that
v can be either symmetric or antisymmetric. We can use the Sturm oscillation

theorem [7] to determine the exact parity of eigenvectors by the fact that v
(n)
m

should have m− 1 zeroes, from which it follows that

v(n)m (ψ) = (−1)mv(n)m (π − ψ). (3.18)

As mentioned in the proof of theorem 3, for n ≥ 1 each fn has the eigenvector
generated by the conformal Killing field and defined as follows

v
(n)
conf = sinψf ′n(ψ), (3.19)

corresponding to the λnconf = (2− k). As f ′n(ψ) has exactly n− 1 zeroes, there
are n−1 eigenvalues smaller than λnconf = (2−k) which follows from the Sturm
oscillation theorem. We shall therefore denote

v
(n)
n−1 = sinψf ′n(ψ) λ

(n)
n−1 = (2− k). (3.20)
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Stability of f0

By (3.11)(3.12), the eigenproblem for f0 is

L0v = λv, (3.21)

L0v = − 1

sink−1 ψ

(

sink−1 ψv′
)′
+

(k − 1)

sin2 ψ
v. (3.22)

We can multiply (3.11) by v sink−1 ψ and integrate on the interval [0, π] to get

λ

∫ π

0

v2wdψ =

∫ π

0

(

v′2 +
k − 1

sin2 ψ
v2
)

sink−1 dψ > 0. (3.23)

All the terms under the integrals are positive for v 6= 0 so λ > 0 and f0 is
linearly stable. We can calculate the spectrum of (3.22) explicitly. First we
change the independent function to

w(ψ) = v(ψ) sin(k−1)/2 ψ (3.24)

and the eigenproblem (3.21) simplifies to

− w′′ + V0(ψ)w =

(

λ− 1

2
(k − 1)

)

w, (3.25)

V0(ψ) =
1

4
(k2 − 1) cot2 ψ. (3.26)

The solution to (3.25) with the proper asymptotic at ψ = 0 can be written in
terms of the associated Legendre polynomials

w(ψ) =
√

sinψP−α
β (cos(ψ)), (3.27)

α =
k

2
, β = −1

2
+

1

2

√

(k − 1)2 + 4λ. (3.28)

We now analyse the behaviour at ψ = π by expanding P−α
β around cosπ = −1

P−α
β (z) =

2α/2Γ(α)

Γ(α− β)Γ(β + α+ 1)
(z + 1)−α/2(1 +O((z + 1)))

− 1

π
2−α/2 sin(πβ)Γ(−α)(1 + z)α/2(1 +O((z + 1)))

(3.29)

The quantization of λ is obtained by setting the coefficient in the first term
to zero. This can be achieved only by selecting β so that one of the functions
1/Γ(z) will be zero, which implies β ∈ R. But then β+α+1 > 0 and the only
possible zeroes are for

α− β = −m, m ∈ N0 (3.30)
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which gives rise to the following quantization of λ

λ(0)m = (1 +m)(k +m). (3.31)

The eigenvectors corresponding to (2.22) are

w
(m)
0 (ψ) =

√

sinψP
−k/2
k/2+m(cosψ). (3.32)

By the parity properties of P
−k/2
k/2+m we get the symmetric and antisymmetric

families of eigenvectors

w
(m)
0 (ψ) = (−1)mw0

m(π − ψ) (3.33)

which agrees with (3.18). Going back to the eigenvectors of L0 we obtain

v
(m)
0 (ψ) = sin(ψ)C

( 1+k

2 )
m (cosψ), (3.34)

where C
(λ)
m are the Gegenbauer polynomials connected to the Legendre poly-

nomials [6] by

Pµν (x) =
2µ Γ(1− 2µ) Γ(ν + µ+ 1)

Γ(ν − µ+ 1)Γ(1− µ) (1− x2)
µ/2

C
( 1
2−µ)
ν+µ (x) . (3.35)

The relation to Gegenbauer polynomial was emphasized because C
(δ)
m (x) are

polynomials in x of degree m. The closed form of v
(0)
m for first few m are given

below.

v
(0)
0 = sin(ψ),

v
(0)
1 =

1

2
(k + 1) sin(2ψ),

v
(0)
2 =

1

8

(

k2 − 1
)

sin(ψ) +
1

8

(

k2 + 4k + 3
)

sin(3ψ),

v
(0)
3 =

1

48

(

2k3 + 6k2 − 2k − 6
)

sin(2ψ) +
1

48

(

k3 + 9k2 + 23k + 15
)

sin(4ψ).

(3.36)

Stability of f1

For f1 the eigenproblem is stated as

L1v = λv. (3.37)

L1v = − 1

sink−1 ψ

(

sink−1 ψv′
)′
+ (k − 1)

cos 2ψ

sin2 ψ
v (3.38)

We can get the bound similar to (3.23) but valid only for the antisymmetric
eigenvectors (otherwise the boundary terms from the integration by parts do
not vanish) by integrating (3.37) on the interval [0, π/2]

λ

∫ π/2

0

v2wdψ =

∫ π/2

0

(

v′2 + (k − 1)
cos 2ψ

sin2 ψ
v2
)

sink−1 dψ > 0. (3.39)
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(3.37) is also solvable by the procedure similar to that used in the case of f0
which yields

v
(m)
1 (ψ) = sin(ψ)C

( 1+k

2 )
m (cosψ), (3.40)

λ(1)m = 2 + k(−1 +m) +m+m2. (3.41)

The only eigenvalue smaller than zero is λ
(1)
0 = 2− k and, by C

(δ)
0 (x) = 1, the

corresponding eigenvector is v
(0)
1 = sinψ. By (3.34), v

(0)
m = v

(1)
m so the table

(3.36) gives the closed forms of v
(1)
m .

Stability of f2 and f3

Although we cannot solve (3.11) analytically for n ≥ 2 we know the number
of negative eigenvalues from theorem 3 and the parity of the corresponding
eigenvectors from (3.18). We use that knowledge to reduce the number of
unstable directions by restricting the possible perturbations to those belonging
to H+ or H−. By this procedure we kill all the antisymmetric modes of L2 and
the symmetric ones of L3 reducing the number of instabilities of f2 and f3 to
one. We can thus write the perturbed solutions around f2 and f3 as

f+ = f2 +A0e
−λ

(2)
0 tv

(0)
2 +A2e

−λ
(2)
2 tv

(2)
2 + . . . , (3.42)

f− = f3 +B1e
−λ

(3)
1 tv

(1)
3 +B3e

−λ
(3)
3 tv

(3)
3 + . . . . (3.43)

The first modes are unstable while the latter are stable. This will be used in
the following sections where we shall determine the first two modes of f2,3 by
solving the PDE (3.4) numerically.

3.3 Blow-up

Although the theorem 5 states that some kind of singular behaviour will occur,
it does not tell us what is the form of blow-up. We shall now turn onto the
mechanism of blow-up for the gradient flow of the maps Sk → Sk.

From now on we assume that the blow-up time T is known a priori. By sym-
metry, the blow-up can be localized only on the edges of the interval [0, π].
Because of the reflection symmetry f(ψ) → f(π − ψ) of the gradient flow
equations we can focus our analysis at one of the edges, say ψ = 0. Because
the blow-up is localized within some small neighbourhood of a pole of Sk,
the curvature of the domain does not play any role so we change the domain
manifold to R

k being the space tangent to Sk at ψ = 0. Therefore in this
section we will analyse the behaviour of the gradient flow for maps R

k → Sk

satisfying the ansatz analogous to (2.19) but with the metric tensors of the
domain and the target manifolds given by

domain: ds2 = dr2 + r2ds2
∣

∣

Sk−1 (3.44)

target: dS2 = dh(r)2 + sin2 h(r)dS2
∣

∣

Sk−1 . (3.45)
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The role of ψ is then taken by the radial variable r and f is replaced by h. The
Dirichlet energy of h is

E(h) =
1

2

∫ ∞

0

(

h′2 + (k − 1)
sin2 h

r2

)

rk−1dr, (3.46)

from which the following tension field can be derived

τ(h) = h′′ +
(k − 1)

r
h′ − k − 1

2

sin 2h

r2
. (3.47)

The Euler-Lagrange equations for the stationary point of E(h) are

τ(h) = 0, h(0) = 0, h(∞) = mπ. (3.48)

The boundary condition at ∞ follows from the finiteness of E(h). As in the
case of the maps Sk → Sk, (3.46) has no stable stationary points apart from
nπ. This can be shown using the conformal transformation rA : Rk → R

k and
the rescaled function hA defined as follows

rA(r) = eAr, hA = h ◦ rA. (3.49)

The energy of hA is

E(hA) = e(2−k)AE(h) (3.50)

and therefore for any h 6= nπ the energy can be decreased by rescaling the
domain manifold. Also the tension field scales as follows

τ(hA)r = e2Aτ(h)rA (3.51)

where τ(h)r is the tension field at the point r. The gradient flow for E(h) is
defined as

∂th = τ(h), h(0) = 0, h(∞) = mπ. (3.52)

The simple scaling property of the tension field motivates the ansatz

h(t, r) = H(eA(t)r). (3.53)

The idea behind such ansatz is that the solutions to (3.52) could consist of a
constant profile sliding along the path generated by the conformal transform.
Substituting (3.53) to (3.52) gives us

A′(t)e−2A(t)yH ′(y) = τ(H)y. (3.54)

H is the function of y only, so the term involving t has to be constant and we
get

A′(t)e−2A(t) = C, (3.55)

e2A =
1

√

2C(T − t)
, (3.56)

CyH(y) = τ(H)y. (3.57)
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The choice of the sign of C corresponds to the choice between the solutions
which expand or shrink in time. The possibly singular behaviour is displayed
only by the function which shrinks in time because if H solves (3.57) its first
spatial derivative at r = 0 is

∂r [H(y)]r=0 =
1

√

2C(T − t)
H ′(0). (3.58)

From (3.57), by the equation similar to (3.15), we know that the only possible
asymptotic behaviour of H at y = 0 fulfilling H(0) = 0 is H ∼ y, therefore
H ′(0) 6= 0. We conclude that for C > 0 the quantity (3.58) blows up in time
T . In the literature this type of singularity is called the type I blow-up. We
can fix C to 1/2 by setting the argument of H to

y =
r√
T − t

, (3.59)

1

2
yH ′(y) = τ(H)y. (3.60)

By the fact that the solution to (3.60) has to be regular for any r > 0 and any
time t including t = T we have to impose the condition on H

∀r > 0 : lim
t→T

∣

∣

∣

∣

H

(

r√
T − t

)∣

∣

∣

∣

= |H(∞)| <∞. (3.61)

Such requirement, together with 0 = f(t, 0) = H(0), gives us the proper bound-
ary conditions for possible static solutions to (3.65). We are therefore looking
for the solutions to the ODE

H ′′ +

(

(k − 1)

y
− y

2

)

H ′ − k − 1

2

sin 2H

y2
= 0,

H(0) = 0, H ′(∞) = 0.

(3.62)

There is also another approach to obtain (3.62) called a self-similar ansatz. It
consist of setting h = H(y) with y as in (3.59) a priori to solving (3.55). It
took its name from the fact that such ansatz is invariant under the self-similar
symmetry of (3.52) given by

r → λr, (T − t) → λ2(T − t). (3.63)

The complete set of self-similar variables consists of y and the logarithmic time
s defined by the relations

y =
r√
T − t

, s = − log(T − t), h(t, r) = H(s, y). (3.64)

In such variables (3.52) takes the form

∂sH = H ′′ +

(

(k − 1)

y
− y

2

)

H ′ − k − 1

2

sin 2H

y2
. (3.65)
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The self-similar solution H = H(y) is therefore a stationary point of (3.65).

Fan [4] used ODE techniques to prove the existence of the family of solutions
to (3.62) Hn, n ≥ 0, for 3 ≤ k ≤ 6 with the structure similar to that of
the harmonic maps between spheres. As in the case of f0, there is the trivial
solution H0 = 0. Then, for n ≥ 1 each Hn has the nodal number n, n − 1
extrema and Hn ∈ [0, π]. Also the index of Hn, albeit not known analytically,
can be found numerically to be n.
The original equation possesses a translational symmetry in the time variable,
this means that Hn(r/

√
T − t) is a solution to (3.52) for any choice of the

blow-up time T . The ambiguity in the choice of T manifests itself as a gauge
mode. To obtain the explicit form of this mode we can ask what happens if
the blow-up is realized by Hn, but it occurs at time T ′ which is a bit different
from T , say T ′ = T + δ. In such situation we have

Hn

(

r√
T + δ − t

)

= Hn

(

r√
T − t

)

− δ
1

2

r

(T − t)3/2
H ′
n

(

r√
T − t

)

+O(δ2)

= Hn(y)−
δ

2
esyH ′

n(y) +O(δ2)

(3.66)

which means that the change of the blow-up time by δ results in the exponen-
tially increasing perturbation along the mode yH ′

n with the associated eigen-
value −1. This means, that among n unstable modes of Hn there is one gauge
mode and thus H1 possesses no unstable modes apart from the gauge one and
the blow-up can be realized by the profile of H1.

3.4 Bisection

Although we already know that f2 and f3 are saddle points of E(f) we shall
demonstrate in this section how to obtain them using only the heat flow (3.4).

Let us formally denote the basins of attraction of 0 and π as Γ(0) and Γ(π)
respectively. We say formally, because the solutions to (3.4) will blow up (e.g.
by Theorem 5) before asymptotically converging to either of the ground states.
We start by choosing g+ ∈ Γ(π)∩H+ and g+(0) = g+(π) = 0. We now form a
path gA ∈ H+ such that

gA = A · g+, A ∈ [0, 1]. (3.67)

Obviously for 0 ≤ A ≪ 1, gA ∈ Γ(0), so the curve intersects both, Γ(0) and
Γ(π). As Γ(π) and Γ(0) are disjoint open sets, the curve leading from one of
them into another has to contain the closed set which does not belong to either
of the open sets. By definition, initial data from this set cannot fall into any of
those attractors. This means that there is at least one A∗ such that the flow
starting from gA∗ is not going to converge to the global energy minimum. Still,
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for any initial data the energy has to decrease along the flow and for A = A∗

it cannot asymptotically decrease to 0, so its infimum E∗ obeys

E∗ = inf
t≥0

E(t) > 0 (3.68)

and hence, if gA∗ does not blow up, the limiting values are

lim
t→∞

E(t) = E∗ > 0, lim
t→∞

dE

dt
(t) = 0. (3.69)

But, dE/dt→ 0 can happen only if ∂tf → 0 so

lim
t→∞

f(t, ψ) = f∗(ψ) (3.70)

which means, that f∗ is a symmetric solution to (2.24) with E(f∗) = E∗, dif-
ferent from the ground states and, by construction, it is a saddle point in H+.
As g+ was chosen to be generic, by such procedure we will obtain the saddle
point of the lowest index, namely f∗ = f2.

Analogous procedure can be applied to H− with (ψ + g−) ∈ H− ∩ Γ(π − ψ),
g−(0) = g−(π) = 0 and

gB = ψ +B · g−, B ∈ [0, 1] (3.71)

to obtain f3.



Chapter 4

Numerical results

4.1 Numerical realization of the bisection

The procedure described in 3.4 can be easily realized by solving the PDE (3.4)
numerically. For H+, we start by choosing g+ to be

g+(ψ) = sinψ. (4.1)

Then, the proper A∗ is found by bisection between the blow-up and the con-
vergence to 0. As the bisection cannot yield an exact value of A∗ (due to the
finite machine precision) we are not able to reach precisely the saddle point.
Rather, as we are starting a bit off the border between attractors, the solution
slides along it reaching the neighbourhood of f2 along its stable direction, it
stays there for some time but then starts to move away, slowly decaying along
the unstable direction to finally either fall into 0 or blow up. The smaller the
numerical error of A∗ the closer we get to the border and the longer solutions
stays near f2.

From the numerical solutions to PDE (3.4) we can read off the quantities
involved in approaching and leaving the neighbourhood of f2. These are the
first two modes of f2 along with their respective eigenvalues as presented in

(3.42). To obtain the eigenvalues λ
(2)
0,2 we use the function ∂t∂ψf

∣

∣

ψ=0
which,

while in a close neighbourhood of f2 is

∂t∂ψf
∣

∣

ψ=0
= C0e

−λ
(2)
0 t + C2e

−λ
(2)
2 t. (4.2)

After obtaining the data points from numerically solving PDE (3.4), we fit

(4.2) with C0,2 and λ
(2)
0,2 as free parameters. C0,2 depend on the normalization

of the unknown functions v0,2 and their numerical values are insignificant to

20
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us. The same relation can be used to determine λ
(3)
1,3 while close to f3 by

∂t∂ψf
∣

∣

ψ=0
= C0e

−λ
(3)
1 t + C2e

−λ
(3)
3 t, (4.3)

and similarly for f0,1

∂t∂ψf
∣

∣

ψ=0
= D0e

−λ
(0)
0 (4.4)

∂t∂ψf
∣

∣

ψ=0
= D1e

−λ
(1)
0 . (4.5)

The results from fitting to (4.2) and (4.3) compared to numerically solving
(3.11) are shown in the table 4.1.

λ
(n)
m Heat flow Eigenproblem

λ
(0)
0 2.9670 3

λ
(1)
1 3.9963 4

λ
(2)
0 -2.8924 -2.8926

λ
(2)
2 4.5899 4.5911

λ
(3)
1 -10.5946 -10.6650

λ
(3)
3 4.4004 4.3942

Table 4.1: Comparison of the eigenvalues calculated by solving (3.4) and by
solving (3.11) for k = 3. The values from solving eigenproblem for n = 0, 1 are
exact by (3.31) and (3.41).

4.2 Details of numerical calculations

Both, the eigenproblem and the heat flow have been simulated using the pro-
grams written in ANSI C and using double precision arithmetic. The GSL
library provided the set of standard time marching procedures using Runge-
Kutta algorithms [5].

ODE (2.24) have been solved by shooting from (ψ, f) = (0, 0) to the saddle
points (π, 0) and (π, π). Eigenproblem has been solved parallel to the ODE
(2.24) and eigenvalues have been obtained by the shooting method as well. In
both problems we have used the series approximation to start near (0, 0) but
not at (0, 0), as (0, 0) is a saddle point.

The PDE (3.1) have been solved using the methods of lines with the derivatives
on r.h.s. of (3.1) approximated by the three point stencils (order 2 for the first
derivative, order 1 for the second derivative). Stencils were symmetric inside
the grid and asymmetric on both of its edges. The time marching was run by
the Runge-Kutta-Fehlberg (4,5) method from the GSL library [5]. The details
of the simulations giving rise to the figures 4.1–4.4 are given in table 4.2.
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Grid points 400 400
Domain [0, π/2] [0, π]

Initial data ψ +B sin(2ψ) A sin(ψ)
Critical value B = 1.24571310318894035 A = 2.10669393489537526
Bisection error B∗ = B ± 10−15% A∗ = A± 10−15%

Stepping function rkf45 rkf45

Table 4.2: Detailed parameters of numerical simulations.
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t = 0.0

π/2

π/2

t = 1.4 t = 2.9

t = 4.3 t = 5.8 t = 7.2

10−2

10−1

100

101

102

0 π/4 π/2

|∂
t
f
(t
,ψ

)|

ψ

t = 8.7 t = 10. t = 11.

v
(2)
0

v
(2)
2

Figure 4.1: Sequence of snapshots of numerical solutions to the heat flow with
initial data g+(ψ) = A · sin(ψ) with A as in 4.2. Each snapshot depicts |∂tf |
(red line, larger plot) normalized so that |∂t∂ψf(t, 0)| = 1 along with the plot of
f(t) (the plot in the upper right corner). For comparison the first two modes of

f2 (blue dashed lines), normalized to v
(2)′
0,2 (0) = 1 have been also depicted. The

evolution can now be divided into the following stages: (t = 0.0) non-linear

approach to f2, (t = 1.4−2.9) linear convergence to f2 along v
(2)
2 , (t = 4.3−10.)

linear divergence along v
(2)
0 , (t = 3.5) non-linear approach to ground state f0,

(t ≥ 4) linear convergence to f1 along v
(1)
1 .
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Figure 4.2: Sequence of snapshots of numerical solutions to the heat flow with
initial data g−(ψ) = ψ + B · sin(2ψ) with B as in 4.2. Each snapshot depicts
|∂tf | (red line, larger plot) normalized so that |∂t∂ψf(t, π/2)| = 1 along with
the plot of f(t) (the plot in the upper right corner). For comparison the first

two modes of f3 (blue dashed lines), normalized to v
(3)′
1,3 (π/2) = 1 have been

also depicted. The evolution can now be divided into the following stages:

(t = 0) non-linear evolution, (t = 1.5 − 2) linear convergence to f3 along v
(3)
3 ,

(t = 2.5 − 3.) linear divergence along v
(3)
1 , (t = 3.5) non-linear approach to

ground state f1, (t ≥ 4) linear convergence to f1 along v
(1)
1 .
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Figure 4.3: Stages of the heat flow evolution for symmetric initial data de-
scribed in the caption of figure 4.1.
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Figure 4.4: Stages of the heat flow evolution for antisymmetric initial data as
described in the caption of figure 4.2.



Appendix A

Useful identity

Given the E-L equations

1

w
(wf ′)

′
+ V (f, x) = 0 (A.1)

the second variation in the direction v = gf ′, for g arbitrary, can be written as

1

w
(wv′) +

∂V

∂f
v =

1

g

[

(

( g

w

)′

w

)′

v − ∂

∂x

(

g2V (f, x)
)

]

= A(x)v +B(f, x).

(A.2)

Where we have differentiated the E-L equation, multiplied it by g and used the
fact that

1

w
(w(gf ′)′)

′ − g

(

1

w
(gf ′)′

)′

=

(

( g

w

)′

w

)′

f ′ − 2g′V (f, x). (A.3)

26



Appendix B

Numerical methods

B.1 Method of lines

In order to solve the Cauchy problem

∂tf = τ(f), f(0, ψ) = g(ψ) (B.1)

we discretize the spatial domain in a uniform way to create the grid of N points

ψi =
i− 1

N − 1
π ∈ [0, π], i ∈ 1, . . . , N. (B.2)

To each point we assign a function of time fi(t), and we denote the set of fi as

a vector ~f ∈ R
N . Then, the solution to (B.1) at points ψi can be approximated

by fi(t) if ~f is a solution to the following ordinary differential equation

d~f

dt
= τ̂(~f), fi(0) = g(ψi). (B.3)

The map ~τ : RN → R
N is a discretized approximation of τ . As τ = τ(f, ∂ψf, ∂ψψf)

it is sufficient to choose the differentiation schemes approximating the first and
second derivatives. We choose the following discretizations of derivatives called
the three point stencil

∂ψf
∣

∣

ψi

≈ Di
~f =

1

2h
(fi+1 − fi−1), (B.4)

∂ψψf
∣

∣

ψi

≈ D2
i
~f =

1

h2
(fi+1 − 2fi + fi−1), (B.5)

where 1 ≥ i ≥ N −1. We do not define the D0, DN etc. because the boundary
values imply df0/dt = 0 and dfN/dt = 0 so we don’t need the approximations of
τ(f) at points ψ0 and ψN . The above schemes are of order 2 and 1 respectively,
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which means that

∂ψf
∣

∣

ψi

= Di
~f +O(h2), (B.6)

∂ψψf
∣

∣

ψi

= D2
i
~f +O(h). (B.7)

With such choice of differentiation schemes we end up with a following form of
(B.3)

dfi
dt

= τ(fi, Di
~f,D2

i
~f), fi(0) = g(ψi). (B.8)

We solve the above equation using a Runge-Kutta method with adaptive step
size described in the next section.

B.2 Time marching method

To approximate the solution to the initial value problem for ordinary differential
equation

y′(t) = f(t, y(t)), y(0) = y0 (B.9)

where y ∈ R
N and f : R×R

N → R
N we use the explicit Runge-Kutta method

with s intermediate steps which approximates yn+1 = y(tn+1) by

yn+1 = yn + h
s

∑

i=1

biki, (B.10)

where ki are the values of the intermediate steps given by

k1 = f(tn, yn),

k2 = f(tn + c2h, yn + a21k1),

...

ks = f(tn + csh, yn +

s−1
∑

j=1

asjkj).

(B.11)

The choice of the constants ci, aij and bi uniquely determines a specific Runge-
Kutta (RK) method, there is also a systematical way of presenting those coef-
ficient called the Butcher’s tableau (table B.1).
To calculate the solution in an efficient way one can vary the time step size
∆tn = tn+1 − tn to decrease the number of calculations per a unit of time,
keeping the relative error constant per unit of time. This is realized by com-
bining two s-stage RK methods, one of order p and the other of order p + 1
which use the same intermediate values ki, so having the same parameters ci
and aij but different bi. The solutions are then approximated by

yn+1 = yn + h

s
∑

i=1

biki, y∗n+1 = yn + h

s
∑

i=1

b∗i ki, (B.12)
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0

c2 a21
c3 a31 a32
...

...
...

. . .

cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1 bs

Table B.1: The Butcher tableau for the explicit Runge–Kutta method.

where stars have been used to denote the coefficients of the method of order
p+ 1. The difference between yn+1 and yn gives the error estimate

ǫi = |(yn+1)i − (y∗n+1)i| = h

∣

∣

∣

∣

∣

∣

s
∑

j=1

(bj − b∗j )(kj)i

∣

∣

∣

∣

∣

∣

, i ∈ {1, . . . , N}. (B.13)

If the calculated error or too small compared with the desired error level the
method changes step accordingly to the algorithm described in [5]. The method
of our choice was embedded Runge–Kutta–Fehlberg (RKF45) of order 4/5 with
the Butcher tableau presented in table B.2.

0
1/4 1/4
3/8 3/32 9/32
12/13 1932/2197 -7200/2197 7296/2197
1 439/216 -8 3680/513 -845/4104
1/2 -8/27 2 -3544/2565 1859/4104 -11/40
25/216 0 1408/2565 2197/4104 -1/5 0
16/135 0 6656/12825 28561/56430 -9/50 2/55

Table B.2: Butcher tableau for embedded Runge-Kutta-Fahlberg method. The
lowest row contains b∗i .
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