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14.4 Description of Huffman Coding

One of the oldest and most elegant forms of data compression is Huffman coding, an algorithm based

on minimum redundancy coding. Minimum redundancy coding suggests that if we know how often

different symbols occur in a set of data, we can represent the symbols in a way that makes the data

require less space. The idea is to encode symbols that occur more frequently with fewer bits than

those that occur less frequently. It is important to realize that a symbol is not necessarily a character

of text: a symbol can be any amount of data we choose, but it is often one byte's worth.

14.4.1 Entropy and Minimum Redundancy

To begin, let's revisit the concept of entropy introduced at the beginning of the chapter. Recall that

every set of data has some informational content, which is called its entropy. The entropy of a set of

data is the sum of the entropies of each of its symbols. The entropy S of a symbol z is defined as:

Sz = -lgPz

where Pz is the probability of z being found in the data. If it is known exactly how many times z

occurs, Pz is referred to as the frequency of z. As an example, if z occurs 8 times in 32 symbols, or

one-fourth of the time, the entropy of z is:

-lg(1/4) = 2 bits

This means that using any more than two bits to represent z is more than we need. If we consider

that normally we represent a symbol using eight bits (one byte), we see that compression here has

the potential to improve the representation a great deal.

Table 14.1 presents an example of calculating the entropy of some data containing 72 instances of

five different symbols. To do this, we sum the entropies contributed by each symbol. Using "U" as an

example, the total entropy for a symbol is computed as follows. Since "U" occurs 12 times out of the

72 total, each instance of "U" has an entropy that is calculated as:

-lg(12/72) = 2.584963 bits

Consequently, because "U" occurs 12 times in the data, its contribution to the entropy of the data is

calculated as:



(2.584963)(12) = 31.01955 bits

In order to calculate the overall entropy of the data, we sum the total entropies contributed by each

symbol. To do this for the data in Table 14.1, we have:

31.01955+36.000000+23.53799+33.94552+36.95994 = 161.46300 bits

If using 8 bits to represent each symbol yields a data size of (72)(8) = 576 bits, we should be able to

compress this data, in theory, by up to:

1-(161.463000/576) = 72.0%

Table 14.1. The Entropy of a Set of Data Containing 72 Instances of 5
Different Symbols

Symbol Probability Entropy of Each Instance Total Entropy

U 12/72 2.584963 31.01955

V 18/72 2.000000 36.00000

W 7/72 3.362570 23.53799

X 15/72 2.263034 33.94552

Y 20/72 1.847997 36.95994

14.4.2 Building a Huffman Tree

Huffman coding presents a way to approximate the optimal representation of data based on its

entropy. It works by building a data structure called a Huffman tree, which is a binary tree (see

Chapter 9) organized to generate Huffman codes. Huffman codes are the codes assigned to symbols

in the data to achieve compression. However, Huffman codes result in compression that only

approximates the data's entropy because, as you may have noticed in Table 14.1, the entropies of

symbols often come out to be fractions of bits. Since the actual number of bits used in Huffman

codes cannot be fractions in practice, some codes end up with slightly too many bits to be optimal.

Figure 14.1 illustrates the process of building a Huffman tree from the data in Table 14.1. Building a

Huffman tree proceeds from its leaf nodes upward. To begin, we place each symbol and its frequency

in its own tree (see Figure 14.1, step 1). Next, we merge the two trees whose root nodes have the

smallest frequencies and store the sum of the frequencies in the new tree's root (see Figure 14.1,

step 2). This process is then repeated until we end up with a single tree (see Figure 14.1, step 5),

which is the final Huffman tree. The root node of this tree contains the total number of symbols in the

data, and its leaf nodes contain the original symbols and their frequencies. Because Huffman coding

continually seeks out the two trees that appear to be the best to merge at any given time, it is a

good example of a greedy algorithm (see Chapter 1).

Figure 14.1. Building a Huffman tree from the symbols and frequencies in
Table 14.1



14.4.3 Compressing and Uncompressing Data

Building a Huffman tree is part of both compressing and uncompressing data. To compress data

using a Huffman tree, given a specific symbol, we start at the root of the tree and trace a path to the

symbol's leaf. As we descend along the path, whenever we move to the left, we append to the

current code; whenever we move to the right, we append 1. Thus, in Figure 14.1, step 6, to

determine the Huffman code for "U" we move to the right (1), then to the left (10), and then to the

right again (101). The Huffman codes for all of the symbols in the figure are:

U = 101, V = 01, W = 100, X = 00, Y = 11

To uncompress data using a Huffman tree, we read the compressed data bit by bit. Starting at the

tree's root, whenever we encounter in the data, we move to the left in the tree; whenever we

encounter 1, we move to the right. Once we reach a leaf node, we generate the symbol it contains,

move back to the root of the tree, and repeat the process until we exhaust the compressed data.

Uncompressing data in this manner is possible because Huffman codes are prefix free, which means

that no code is a prefix of any other. This ensures that once we encounter a sequence of bits that

matches a code, there is no ambiguity as to the symbol it represents. For example, notice that 01,

the code for "V," is not a prefix of any of the other codes. Thus, as soon as we encounter 01 in the

compressed data, we know that the code must represent "V."



14.4.4 Effectiveness of Huffman Coding

To determine the reduced size of data compressed using Huffman coding, we calculate the product of

each symbol's frequency times the number of bits in its Huffman code, then add them together.

Thus, to calculate the compressed size of the data presented in Table 14.1 and Figure 14.1, we have:

(12)(3)+(18)(2)+(7)(3)+(15)(2)+(20)(2) = 163 bits

Assuming that without compression each of the 72 symbols would be represented with 8 bits, for a

total data size of 576 bits, we end up with the following compression ratio:

1-(163/576)=71.7%

Once again, considering the fact that we cannot take into account fractional bits in Huffman coding,

in many cases this value will not be quite as good as the data's entropy suggests, although in this

case it is very close.

In general, Huffman coding is not the most effective form of compression, but it runs fast both when

compressing and uncompressing data. Generally, the most time-consuming aspect of compressing

data with Huffman coding is the need to scan the data twice: once to gather frequencies, and a

second time actually to compress the data. Uncompressing the data is particularly efficient because

decoding the sequence of bits for each symbol requires only a brief scan of the Huffman tree, which

is bounded.
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14.5 Interface for Huffman Coding
huffman_compress

int huffman_compress(const unsigned char *original, unsigned char **compressed

   int size);

Return Value

Number of bytes in the compressed data if compressing the data is successful, or -1 otherwise.

Description

Uses Huffman coding to compress a buffer of data specified by original , which contains size bytes.

The compressed data is written to a buffer returned in compressed . Since the amount of storage

required in compressed is unknown to the caller, huffman_compress dynamically allocates the

necessary storage using malloc . It is the responsibility of the caller to free this storage using free when it is

no longer needed.

Complexity

O (n ), where n is the number of symbols in the original data.

huffman_uncompress

int huffman_uncompress(const unsigned char *compressed, unsigned 

   char **original);



Return Value

Number of bytes in the restored data if uncompressing the data is successful, or -1 otherwise.

Description

Uses Huffman coding to uncompress a buffer of data specified by compressed . It is assumed that the

buffer contains data previously compressed with huffman_compress . The restored data is written to a

buffer returned in original . Since the amount of storage required in original may not be known

to the caller, huffman_uncompress dynamically allocates the necessary storage using malloc . It is the

responsibility of the caller to free this storage using free when it is no longer needed.

Complexity

O (n ), where n is the number of symbols in the original data.
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14.6 Implementation and Analysis of Huffman Coding

With Huffman coding, we try to compress data by encoding symbols as Huffman codes generated in a

Huffman tree. To uncompress the data, we rebuild the Huffman tree used in the compression process and

convert each code back to the symbol it represents. In the implementation presented here, a symbol in the

original data is one byte.

14.6.1 huffman_compress

The huffman_compress operation (see Example 14.3 ) compresses data using Huffman coding. It begins by

scanning the data to determine the frequency of each symbol. The frequencies are placed in an array,

freqs . After scanning the data, the frequencies are scaled so that each can be represented in a single

byte. This is done by determining the maximum number of times any symbol occurs in the data and

adjusting the other frequencies accordingly. Since symbols that do not occur in the data should be the only

ones with frequencies of 0, we perform a simple test to ensure that any nonzero frequencies that scale to

less than 1 end up being set to 1 instead of 0.

Once we have determined and scaled the frequencies, we call build_tree to build the Huffman tree. The

build_tree function begins by inserting into a priority queue one binary tree for each symbol occurring at

least once in the data. Nodes in the trees are HuffNode structures (see Example 14.1 ). This structure

consists of two members: symbol is a symbol from the data (used only in leaf nodes), and freq is a

frequency. Each tree initially contains only a single node, which stores one symbol and its scaled frequency

as recorded and scaled in the freqs array.

To build the Huffman tree, we use a loop to perform size - 1 merges of the trees within the priority

queue. On each iteration, we call pqueue_extract twice to extract the two binary trees whose root nodes

have the smallest frequencies. We then sum the frequencies, merge the trees into a new one, store the

sum of the frequencies in the new tree's root, and insert the new tree back into the priority queue. We

continue this process until, after size - 1 iterations, the only tree remaining in the priority queue is the

final Huffman tree.



Using the Huffman tree built in the previous step, we call build_table to build a table of the Huffman codes

assigned to every symbol. Each entry in the table is a HuffCode structure. This structure consists of

three members: used is a flag set to 1 or indicating whether the entry has a code stored in it, code is

the Huffman code stored in the entry, and size is the number of bits the code contains. Each code is a

short integer because it can be proven (although this is not shown here) that when all frequencies are

scaled to fit within one byte, no code will be longer than 16 bits.

We build the table by traversing the Huffman tree using a preorder traversal (see Chapter 9 ). In each

activation of build_table , code keeps track of the current Huffman code being generated, and size

maintains the number of bits it contains. As we traverse the tree, each time we move to the left, we

append to the code; each time we move to the right, we append 1. Once we encounter a leaf node, we

store the Huffman code into the table of codes at the appropriate entry. As we store each code, we call the

network function htons as a convenient way to ensure that the code is stored in big-endian format. This is

the format required when we actually generate the compressed data in the next step as well as when we

uncompress it.

While generating the compressed data, we use ipos to keep track of the current byte being processed in

the original data, and opos to keep track of the current bit we are writing to the buffer of compressed

data. To begin, we write a header that will help to rebuild the Huffman tree in huffman_uncompress . The

header contains a four-byte value for the number of symbols about to be encoded followed by the scaled

frequencies of all 256 possible symbols, including those that are 0. Finally, to encode the data, we read one

symbol at a time, look up its Huffman code in the table, and write each code to the compressed buffer. We

allocate space for each byte in the compressed buffer as we need it.

The runtime complexity of huffman_compress is O (n ), where n is the number of symbols in the original

data. Only two parts of the algorithm depend on the size of the data: the part in which we determine the

frequency of each symbol, and the part in which we read the data so we can compress it. Each of these

runs in O (n ) time. The time to build the Huffman tree does not affect the complexity of huffman_compress

because the running time of this process depends only on the number of different symbols in the data,

which in this implementation is a constant, 256.

14.6.2 huffman_uncompress

The huffman_uncompress operation (see Example 14.3 ) uncompresses data compressed with

huffman_compress . This operation begins by reading the header prepended to the compressed data. Recall

that the first four bytes of the header contain the number of encoded symbols. This value is stored in size

. The next 256 bytes contain the scaled frequencies for all symbols.

Using the information stored in the header, we call build_tree to rebuild the Huffman tree used in

compressing the data. Once we have rebuilt the tree, the next step is to generate the buffer of restored

data. To do this, we read the compressed data bit by bit. Starting at the root of the Huffman tree,

whenever we encounter a bit that is in the data, we move to the left; whenever we encounter a bit that is

1, we move to the right. Once we encounter a leaf node, we have obtained the Huffman code for a symbol.

The decoded symbol resides in the leaf. Thus, we write this symbol to the buffer of restored data. After

writing the symbol, we reposition ourselves at the root of the tree and repeat the process. We use ipos

to keep track of the current bit being processed in the compressed data, and opos to keep track of the

current byte we are writing to the buffer of restored data. Once opos reaches size , we have

regenerated all of the symbols from the original data.

The runtime complexity of huffman_uncompress is O (n ), where n is the number of symbols in the original


