

�ext: Lempel-Ziv-Welch (LZW) Algorithm Up: Lossless Compression Algorithms

(Entropy Previous: Adaptive Huffman Coding

Arithmetic Coding

Huffman coding and the like use an integer number (k) of bits for each symbol, hence k is

never less than 1. Sometimes, e.g., when sending a 1-bit image, compression becomes

impossible.

Idea: Suppose alphabet was

X, Y

and

 prob(X) = 2/3

 prob(Y) = 1/3

If we are only concerned with encoding length 2 messages, then we can map all

possible messages to intervals in the range [0..1]:

To encode message, just send enough bits of a binary fraction that uniquely

specifies the interval.

Similarly, we can map all possible length 3 messages to intervals in the range [0..1]:

Arithmetic Coding http://www.cs.cf.ac.uk/Dave/Multimedia/node213.html

1 z 3 2009-12-08 00:42

Q: How to encode X Y X X Y X ?

Q: What about an alphabet with 26 symbols, or 256 symbols, ...?

In general, number of bits is determined by the size of the interval.

Examples:

first interval is 8/27, needs 2 bits -> 2/3 bit per symbol (X)

last interval is 1/27, need 5 bits

In general, need bits to represent interval of size p. Approaches optimal

encoding as message length got to infinity.

Problem: how to determine probabilities?

Simple idea is to use adaptive model: Start with guess of symbol frequencies.

Arithmetic Coding http://www.cs.cf.ac.uk/Dave/Multimedia/node213.html

2 z 3 2009-12-08 00:42

Update frequency with each new symbol.

Another idea is to take account of intersymbol probabilities, e.g., Prediction

by Partial Matching.

Implementation Notes: Can be CPU and memory intensive; patented.

�ext: Lempel-Ziv-Welch (LZW) Algorithm Up: Lossless Compression Algorithms

(Entropy Previous: Adaptive Huffman Coding

Dave Marshall

10/4/2001

Arithmetic Coding http://www.cs.cf.ac.uk/Dave/Multimedia/node213.html

3 z 3 2009-12-08 00:42

