Next Up Previous

Next: Lempel-Ziv-Welch (LZW) Algorithm Up: Lossless Compression Algorithms (Entropy Previous: Adaptive Huffman Coding

Arithmetic Coding

Huffman coding and the like use an integer number (k) of bits for each symbol, hence k is never less than 1. Sometimes, e.g., when sending a 1-bit image, compression becomes impossible.

• Idea: Suppose alphabet was

Х, Ү

and

prob(X) = 2/3 prob(Y) = 1/3

• If we are only concerned with encoding length 2 messages, then we can map all possible messages to intervals in the range [0..1]:

	X			Y		
	xx	XY	Y	х үү		
0	4	/9	6/9	8/9	1	

• To encode message, just send enough bits of a binary fraction that uniquely specifies the interval.

N	lessage	- 0		Codeword
x	xx	▲	1/4	.01
A	ХҮ	4/9	2/4	.10
Y	YX	6/9◄	3/4	.110
	YY	8/9 1	15/16	5 .1111

• Similarly, we can map all possible length 3 messages to intervals in the range [0..1]:

- Q: How to encode X Y X X Y X ?
 - Q: What about an alphabet with 26 symbols, or 256 symbols, ...?
- In general, number of bits is determined by the size of the interval.

Examples:

- first interval is 8/27, needs 2 bits -> 2/3 bit per symbol (X)
- \circ last interval is 1/27, need 5 bits
- In general, need log p bits to represent interval of size p. Approaches optimal encoding as message length got to infinity.
- Problem: how to determine probabilities?
 - $\circ~$ Simple idea is to use adaptive model: Start with guess of symbol frequencies.

Update frequency with each new symbol.

- Another idea is to take account of intersymbol probabilities, e.g., Prediction by Partial Matching.
- Implementation Notes: Can be CPU and memory intensive; patented.

Next Up Previous

Next: Lempel-Ziv-Welch (LZW) Algorithm Up: Lossless Compression Algorithms (Entropy Previous: Adaptive Huffman Coding Dave Marshall 10/4/2001