Mott transition in the Hubbard model on anisotropic honeycomb lattice with implications for strained graphene

G. Rut^{1,2}, M. Fidrysiak¹, D. Goc-Jagło¹, and <u>A. Rycerz¹</u>

¹Institute for Theoretical Physics, Jagiellonian University, Łojasiewicza 11, PL–30348 Kraków, Poland

²Verisk Analytics Sp. z o.o., Rakowicka 7, PL–31511 Kraków, Poland

[https://doi.org/10.3390/ijms24021509]

Dirac point ≠ high symmetry points (!)

The Hamiltonian:
$$H = \sum_{\langle ij \rangle, s} t_{ij} \left(c_{i,s}^{\dagger} c_{j,s} + \text{H.c.} \right) + U \sum_{j} n_{j\uparrow} n_{j\downarrow},$$

where $t_{ij} = \begin{cases} -t_x & \text{if i,j belongs to same zigzag line,} \\ -t_y & \text{otherwise.} \end{cases}$

[$c_{i,s}^{\dagger}/c_{i,s}^{\dagger}$ - creation/annihilation operator, $s = \uparrow$, \downarrow , $n_{is}^{\dagger} = c_{i,s}^{\dagger}c_{i,s}^{\dagger}$.]

The Hartree-Fock approximation:

$$U\hat{D} \approx U \sum_{i} \left(\langle n_{i\uparrow} \rangle n_{i\downarrow} + n_{i\uparrow} \langle n_{i\downarrow} \rangle - \langle n_{i\uparrow} \rangle \langle n_{i\downarrow} \rangle \right),$$

where $\hat{D} = \sum_{j} n_{j\uparrow} n_{j\downarrow}$, $\langle n_{i\uparrow} \rangle = \frac{\overline{n} + \lambda_i m}{2}$, $\langle n_{i\downarrow} \rangle = \frac{\overline{n} - \lambda_i m}{2}$, and

 $\lambda_i = \pm 1$ alternates between the sublattices on <u>bipartite lattice</u>. Adam Rycerz [PM'23] Page 4 of 15 For the half filling ($\overline{n} = 1$) the HF ground-state energy:

$$\frac{E_G^{(\text{HF})}}{N} = -\frac{2}{N} \sum_{\mathbf{k}} \sqrt{E_{\mathbf{k}}^2 + \left(\frac{Um}{2}\right)^2} + \frac{U(1+m^2)}{4},$$

with the factor 2 accounting for $s = \uparrow, \downarrow$ and $\mathbf{k} \equiv (k_x, k_y) \in FBZ$. [No. of lattice sites $N = 2N_x N_y$.]

The band energy: $E_{\mathbf{k}} = t_x \sqrt{a_{\mathbf{k}}^2 + b_{\mathbf{k}}^2}$, $a_{\mathbf{k}} = -\cos\left(\frac{k_x}{2} + \frac{\sqrt{3}k_y}{2}\right) - \cos\left(\frac{k_x}{2} - \frac{\sqrt{3}k_y}{2}\right) - \frac{t_y}{t_x},$ where $b_{\mathbf{k}} = \sin\left(\frac{k_x}{2} + \frac{\sqrt{3}k_y}{2}\right) - \sin\left(\frac{k_x}{2} - \frac{\sqrt{3}k_y}{2}\right).$ [PM'23]

The density of states:

$$\rho(E) = 2N^{-1}\sum_{\mathbf{k}} \left[\delta\left(E - E_{\mathbf{k}}\right) + \delta\left(E + E_{\mathbf{k}}\right)\right],$$

where the two parts correspond to the conduction (E>0) and valence (E<0) band.

The gap equation:
$$1 = \int_{E < 0} dE \rho(E) \frac{U/2}{\sqrt{E^2 + (Um/2)^2}}$$

Unlike for square lattice, for which one gets $m \neq 0$ for any U > 0[see Hirsch, 1985], on a honeycomb lattice the minimization gives m = 0 for $U \leq U_c^{(\text{HF})}$ and $m \neq 0$ for $U > U_c^{(\text{HF})}$ [see Martelo *et al.*, 1997]. This is because $\rho(E) \rightarrow 0$ [$\rho(E) \propto |E|$] for $E \rightarrow 0$.

Density of states for U = 0, $\varepsilon_y > 0$:

Gutzwiller wavefunction (GWF): $|\Psi_{\text{GWF}}\rangle = e^{-\eta \hat{D}} |\psi_0(m)\rangle$, where $|\psi_0(m)\rangle$ denotes a Slater determinant corresponding to a given *m* and η is a variational parameter (quantifying electron correlations).

Variational energy (to be minimized with respect to η and m):

$$E_{G}^{(\text{GWF})} = \frac{\left\langle \psi_{0}(m) \middle| e^{-\eta \hat{D}} H e^{-\eta \hat{D}} \middle| \psi_{0}(m) \right\rangle}{\left\langle \psi_{0}(m) \middle| e^{-2\eta \hat{D}} \middle| \psi_{0}(m) \right\rangle}$$

In many cases, the system may prefer to reduce *m* (even to m = 0) and increase η , allowing to expect that $U_c^{(\text{GWF})} \ge U_c^{(\text{HF})}$.

[Definitions: $\Delta E_G^{(\text{GWF})}(\Delta) = E_G^{(\text{GWF})}(\Delta) - E_G^{(\text{GWF})}(0), \ \Delta \equiv Um.$]

t_y/t_x	$U_c^{(\mathrm{HF})}/t_x$	$U_c^{({ m GA})}/t_x$	$U_c^{(\mathrm{GWF})}/t_x$
1.00	2.231	2.804	3.48(1)*)
0.75	2.034	2.550	2.91(1)
0.50	1.803	2.241	2.69(3)
0.25	1.510	1.830	2.24(1)

Critical U_C -s obtained within different methods:

⇒ Values of $U_c^{(\text{HF})}$ and $U_c^{(\text{GA})}$ [GA – Gutzwiller Approximation] correspond to $N_x, N_y \rightarrow \infty$; $U_c^{(\text{GWF})}$ is obtained for $N_x = N_y = 10$ [$\Leftrightarrow N = 200$]

*) Value of $U_c^{(\text{GWF})} = 3.48 t_x$ [for $t_y = t_x$] can be compared with **the 'exact' QMC results**: $U_c^{(\text{QMC})} = 3.86 t_x$ [see Sorela et al., 2012]

[<u>Notation:</u> $t_{>} \equiv t_{x}$, $t_{<} \equiv t_{y}$ for $\varepsilon_{y} > 0$; $\beta = -\partial \ln t_{ij} / \partial \ln d_{ij}$.] Adam Rycerz [PM'23] Page 11 of 15

Band narrowing and the reduction of double occupancies

$$(\implies t_y/t_x = 0.75)$$

Concluding remarks

- ⇒ Strain applied along armchair direction *modifies DOS without* opening a gap; possibility for Mott semimetal-insulator transition
- ⇒ Different numerical approaches (HF, GA, GWF, CPA...) predicts the critical U_c to *decrease* with the strain
- ⇒ A modified Su-Schrieffer-Heeger model for graphene predicts the parameters (U_c , t_x , t_y) stay in a semimetal range; for maximum possible strains $\varepsilon_y \approx 0.15$ the effects of electron correlations (such as the reduced $\langle n_{i\uparrow}n_{i\downarrow}\rangle$) are noticeable.

Key references:

- J.E. Hirsch, Two-dimensional Hubbard model: Numerical simulation study. <u>Phys. Rev. B 31, 4403 (1985)</u>.
- L.M. Martelo, M. Dzierzawa, L. Siffert, and D. Baeriswyl, Mott-Hubbard transition and antiferromagnetism on the honeycomb lattice. <u>Z. Phys. B</u> <u>103, 335 (1997)</u>.
- S. Sorella, Y. Otsuka, and S. Yunoki, *Absence of a Spin Liquid Phase in the Hubbard Model on the Honeycomb Lattice*. <u>Sci. Rep. 2, 992 (2012)</u>.

Acknowledgment

The work was supported by the National Science Centre of Poland (NCN) via Grant No. 2014/14/E/ST3/00256.

THANK YOU!