Sub-Sharvin conductance in doped graphene nanosystems

Adam Rycerz and Piotr Witkowski

Institute of Theoretical Physics, Jagiellonian University, Łojasiewicza 11, PL–30348 Kraków, Poland

Where resistivity comes from in PERFECT nanosystems?

Time-energy uncertainty principle:

For given energy interval $\Delta E = e \mid V \mid$, time-of-flight cannot be shorter than $\Delta t \geqslant \hbar/(2\Delta E)$. Therefore, the current (per *quantum channel*) is limited by $I = e/\Delta t \leqslant 2(e^2/\hbar) \mid V \mid$, and the conductance $G = I/V \leqslant 2e^2/\hbar = (4\pi)e^2/\hbar$ [— not far from the conductance quantum e^2/\hbar ...]

The above — requires a presence of **charge carriers** (and so **propagating modes**)

In undoped graphene, conductance appears in the absence of charge carriers, due to *evanescent modes*

$$[\sigma_0 = GL/W = 4e^2/(\pi h), \ \mathcal{F} = 1/3]$$

Adam Rycerz [KK-NANO 2022] Page 3 of 15

Takeaway message —

Usual mesoscopic contacts (2DEG, breakable junctions etc.) show so-called Sharvin conductance:

$$\frac{G}{g_0} \approx \frac{W}{\lambda_F/2} = \frac{k_F W}{\pi} \equiv G_{\text{Sharvin}} / g_0,$$

where g_0 is the conductance quantum [$g_0 = 2e^2/h$ in 2DEG or $4e^2/h$ in graphene], W is the constriction width, and $\lambda_F(k_F)$ if the wavelength (wavenumber) for an electron at the Fermi level.

In doped graphene, we have:

$$G \approx (\pi/4) G_{\rm Sharvin}$$

Additionally, the **Fano factor** $\mathcal{F} \approx 1/8 > 0$.

Adam Rycerz [KK-NANO 2022] Page 4 of 15

Basic definitions (1)

The conductance:

$$G = \frac{I}{U} = \frac{\langle Q \rangle}{U\Delta t},$$

with $\langle Q \rangle$ being the average charge transferred during the time interval Δt upon a voltage difference $U = (\mu_L - \mu_R)/e$, and $\mu_L (\mu_R)$ denotes the chemical potential in the left (right) reservoir.

[Notation after: Nazarov and Blanter, Quantum transport: Introduction to Nanoscience. Cambridge University Press, Cambridge, UK, 2009.]

Basic definitions (2)

Fano factor:

$$\mathscr{F} = \frac{\langle (Q - \langle Q \rangle)^2 \rangle}{\langle (Q - \langle Q \rangle)^2 \rangle_{\text{Poisson}}},$$

where the variance of charge transferred for a Poissonian process is

$$\langle (Q - \langle Q \rangle)^2 \rangle_{\text{Poisson}} = e \langle Q \rangle = eI \Delta t.$$

[See: Nazarov and Blanter, Quantum transport: Introduction to Nanoscience. Cambridge University Press, Cambridge, UK, 2009.]

Landauer-Büttiker approach

In the linear–response regime:

$$G = g_0 \sum_{n=0}^{N-1} T_n,$$

$$\mathscr{F} = \frac{\sum_{n=0}^{N-1} T_n (1 - T_n)}{\sum_{n=0}^{N-1} T_n},$$

where T_n – transmission probability for n–th normal mode, N – no. of normal modes in a se-

N – no. of normal modes in a selected lead.

The model

The electrostatic potential is choosen as

$$V(x) = -V_0 \times \begin{cases} |x/x_0|^m & \text{if } |x| \leq x_0 \end{cases}$$
 if $|x| \leq x_0$ if $|x| > x_0$,

E > 0

E < 0

with the limit $m \to \infty$, $V_0 \to \infty$ corresponding to the rectangular barrier studied in earlier works [*Katsnelson, 2006; Tworzydło, 2006*].

The Dirac equation, $\left[v_F \mathbf{p} \cdot \sigma + V(x)\right] \Psi = E \Psi$, with $\Psi = \phi(x) e^{ik_y y}$, $\phi(x) = (\phi_a, \phi_b)^T$, [mass confinement: $k_y = \pi (n + \frac{1}{2})/W$], brought us to:

$$\phi'_a = k_y \phi_a + i \frac{E - V(x)}{\hbar v_F} \phi_b, \qquad \phi'_b = i \frac{E - V(x)}{\hbar v_F} \phi_a - k_y \phi_b.$$

Adam Rycerz [KK-NANO 2022] Page 8 of 15

The rectangular barrier case (1)

In the $m \to \infty$, $V_0 \to \infty$ limit, analytical considerations lead to:

$$T_{k_y}(E) = \left[1 + \left(\frac{k_y}{\varkappa}\right)^2 \sin^2(\varkappa L)\right]^{-1},$$

where

$$\varkappa = \begin{cases} \sqrt{k_F^2 - k_y^2}, & \text{for } |k_y| \leq k_F, \\ i\sqrt{k_y^2 - k_F^2}, & \text{for } |k_y| > k_F, \end{cases}$$

and the Fermi wavenumber $k_F = |E|/(\hbar v_F)$.

Adam Rycerz [KK-NANO 2022] Page 9 of 15

The rectangular barrier case (2)

For a doped sample $k_FL\gg 1$, and — for $|k_y|\leqslant k_F$ — fast oscillations in $T_{k_y}(E)$ can be approximated by an average, namely

$$(T_{k_y})_{\text{approx}} = \frac{1}{\pi} \int_0^{\pi} \frac{d\varphi}{1 + (k_y^2/\varkappa^2) \sin^2 \varphi} = \sqrt{1 - (k_y/k_F)^2},$$

without affecting
$$G=g_0\sum_n T_n \approx \frac{g_0W}{\pi}\int dk_y T_{k_y}(E)$$
 [Approx. of

a sum by integral reffers to $W\gg L$]. For $|k_y|>k_F$, $(T_{k_y})_{\rm approx}=0$.

In turn,
$$G \approx \frac{g_0 W}{\pi} \int_0^\infty dk_y (T_{k_y})_{\text{approx}} = \frac{\pi}{4} G_{\text{Sharvin}}$$
.

Adam Rycerz [KK-NANO 2022] Page 10 of 15

The rectangular barrier vs Sharvin contact

Numerical integration was performed for $V_0 = 1.35 \, \mathrm{eV}$, $L = 200 \, \mathrm{nm}$.

Adam Rycerz [KK-NANO 2022] Page 11 of 15

The Corbino geometry

Summary

For E>0 (electron doping, no p–n junctions) parabolic potential reproduces Sharvin transport; increasing m leads to crossover to the sub–Sharvin regime [$G\approx (\pi/4)\,G_{\rm Sharvin},\,\,\mathscr{F}\approx 1/8$].

For E < 0 (hole doping, two p–n interfaces in series) the conductance is strongly suppressed; sub–Sharvin regime (and the spectrum symmetry upon $E \leftrightarrow -E$) is gradually restored with increasing m.

In the Corbino geometry, one interface is effectively removed for $R_2 \gg R_1$, leading to *intermediate* values of $G \approx (4 - \pi) G_{\text{Sharvin}}$, $\mathcal{F} \approx (9\pi - 28)/(12 - 3\pi) \approx 0.1065 < 1/8$ even for $m \to \infty$.

Adam Rycerz [KK-NANO 2022] Page 14 of 15

Related works:

Paraoanu, *New J. Phys.* **23**, 043027 (2021).
Silvestrov and Efetov, *Phys. Rev. Lett.* **98**, 016802 (2007).
Cayssol, Huard, Goldhaber–Gordon, *Phys. Rev. B* **79**, 075428 (2009).

Acknowledgment

The work was supported by the National Science Centre of Poland (NCN) via Grant No. 2014/14/E/ST3/00256.

THANK YOU!