Charge pumping driven by a moving Kink in graphene nanoribbon
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/ Abstract \

A quantum pump in a buckled graphene ribbon with armchair edges is discussed numerically. By solving the Su-Schrieffer-Heeger model
and performing the computer simulation of quantum transport we find that a kink adiabatically moving along the metallic ribbon results in
highly efficient pumping, with a charge per kink transition close to the maximal value determined by the Fermi velocity in graphene.
Remarkably, insulating nanoribbon show the quantized value of a charge per kink (2e) in a relatively wide range of the system parameters,
providing a candidate for the quantum standard ampere. This finding is attributed to the presence of a localized electronic state, moving

together with a kink, whose energy lies within the ribbon energy gap. /
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Model and methods (1/2) Model and methods (2/2)
Modified Su-Schrieffer-Heeger (SSH) model for graphene: Landauer-Buttiker conductance:

%SSH =T+ Vbonds + Vangles’
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where
T=—1 Z o —Podyldy (CiTstS + C}Tscis)’ where G, = 2¢?/h (the conductance quantum), and 7, is the
(if),s ’ ’ transmission probability for the n-th normal mode.
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with j — the mode in output lead, and y, — the kink position. RPN sl e

Qaconstrain: Z<l.].> dij = const.

/ Main results \ /Summary \

Metallic ribbon: For moderate bucklings (with relative bond

metallic § | distortions < 10%) the kink suppresses the current flow, and shifts
ribbon —> ;:;’ ) the electric charge when moving between the leads.
| /4 W= —> The charge per cycle is not quantized.
°7 W=1la
6 T | Semiconducting ribbon: States localized near the kink (with
semiconducting 1o energies lying within the gap) can be utilized to transport
ribbon —> o

a quantized charge of 2e per kink transition.

Charge per kink [e]

—> A candidate for the quantum standard ampere occurs.
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