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Quantum transport in an impurity-free Corbino disk in bi-
layer graphene (BLG) pierced by magnetic flux is analyt-
ically investigated by mode-matching method. As in the
monolayer, conductance oscillations are present at pseu-
dodiffusive regions. At the Dirac point the oscillation apli-
tude highly depends on the interaction between the layers
as well as the ratio of outer and inner radii, yet the period
remains the same as in the monolayer. At higher Landau
levels or at large potential difference between the layers
oscillations per valley behave the same way as in a mono-
layer. A comparison with a standard 2DEG Corbino disk is
provided.

Model

The Corbino disk can be characterized by inner Ri and
outer Ro radii. In the discussed system the ring area is
made of weakly-doped bilayer graphene whereas metallic
contacts are modelled with heavily-doped BLG. We as-
sume that the magnetic field pierces only the ring. Since
the analyzed system posseses a polar symmetry, the
corresponding Hamiltonian commutes with the angular
momentum operator Jz = �i~∂j + ~sz/2, thus we can
take wavefunctions as products of angular and radial
parts y(r,j) = ei jj�f
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where j = 0,±1,±2, ... We choose a symmetri-
cal vector potential ~A = [�sin(j) ,cos(j)]T rB/2

(B = 0 outside 0 < x < L), thus the gauge invari-
ant momentum equals
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Figure 1: Weakly doped bilayer graphene ring characterized
with inner Ri and outer radii Ro between metallic contacts.
For the K valley the 4-band Hamiltonian of such a system

reads
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where t? ⇡ 0.38eV is the interlayer nearest-neighbour hop-
ping energy, and nF ⇡ c/300 is the Fermi velocity in a mono-
layer. Uj(x) (with j = 1,2 the layer index) is an electrostatic
potential energy

Uj(x) =

(
U• if x < Ri or x > Ro,

g jV/2 if Ri < x < Ro,
(2)

where V is the potentials difference between the layers and
g j = (�1) j .
The conductance is derived by the Landauer-Büttiker formula

G = G
0

TrT , (3)

where G
0

⌘ g
0

= e2/h, T = t†t and t is a block-diagonal ma-
trix with each block corresponding to different transmission
mode (we presume that these modes do not mix). In order
to derive a possibly general solution we keep a bias poten-
tial between the layers. Since the spin degree of freedom
does not play an important role in the QRCE, we neglect the
Zeeman effect.

Quantum relativistic Corbino effect

Transmission probability through the analysed sys-
tem can be retrieved from the solution of Eq. (4)
and mode matching analysis. Not surprisingly, at
the Dirac point as in a case when there is no
magnetic field, two transmission peaks emerge

T = cosh

�2 [L( j±A +fD/f
0

)] , (4)

where fD = p
�
R2
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the ring, f
0
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with ° = 2cosh(L) +
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sinh(L)/2, t =
p
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? and l? = ~vF/t?. Since
the Landauer-Büttiker formula requires the summation over
all modes j, conductance G exhibits oscillatory behavior in
fD/f

0

with period equal one, just as in a monolayer (see
Fig. 2). It is also important to note that since the distance
between the transmission peaks is 2A , the oscillations re-
sulting from these resonances may interfere with each other.
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Figure 2: Oscillatory behavior of conductance at the Dirac
point for three different setups. Note that the amplitudes
as well as average conductance depend only on the ratio
whereas the period depends on the size of the sample as
well.

A clear view on this effect can be ob-

tained by presenting G in the Fourier series

G =
4g

0

L +
•

Â
m=1

Gm cos [2pmfD/f
0

] , (5)

with Gm = 2g
0

(2p/L)2 mcsch
�
p2m/L

�
cos [2pmA ] . The

first term, 4go/L , gives the mean value of conductance
which is simply twice as large as in a monolayer. It is
possible to estimate the condition for extreme values of
amplitude oscillations, since G

1

/G
2

⌧ 1 and provided the
system is large enough (Ri & 10l?, Ro/Ri & 3; see: Fig. 3)

L ⇡ 4ln(Ri/2l?)/p, (6)
where p is an odd (even) number
for vanishing (maximal) oscillations.

Figure 3: Relation between oscillation amplitudes in bilayer
and monolayer graphene. (a) White lines follow Eq. (6) for
vanishing oscillations in bilayer graphene. (b) Ratio between
oscillations in bilayer and monolayer graphene for two se-
lected inner radii.

For the sake of completeness of the discussion, it is worthy
to check how QRCE emerges in the Andreev-Corbino (AC)
setup, where the conductance can be written as

GNS = 2g
0Â

j

T 2

j

(2�Tj)2

. (7)

In case of the Dirac point we get

GNS = g
0Â

j

32(1+ cosh [2A ]cosh [2FD/F
0

])2

(cosh [4 j+4FD/F
0

]+ cosh [4A ]�2)2

. (8)

Unfortunately, it is not possible to retrieve a com-
pact Fourier series form (5) unless conditions
Ri & 10l?, Ro/Ri & 3 are met. In that case,
with a very good approximation we can write

GNS ⇡ 4g
0

L +
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GNS
m cos [2pmfD/f

0

] , (9)

Comparison with 2DEG

One might put forward a question whether conductance os-
cillations in graphene are obtainable also in non-relativistic
systems. Although there is no analog of the Dirac point in
non-relativistic 2D systems, one might expect a similar be-
havior in the vicinity of Landau levels. Thus, we complement
our investigation with an analysis of the Corbino disk in a
Schrödinger system.
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Figure 4: Comparison of conductance as a function of dop-
ing and magnetic field of bilayer graphene (left) and 2DEG
(right) disks with the same inner and outer radii Ri = 25l?
and Ro = 100l?. Dotted lines indicate quantum-well-like res-
onances, white lines depict the ballistic regime limit marked
by the cyclotrone radii.

In our calculations we have chosen a sample with an effective
mass as in GaAs m? = 0.067me, inner radius Ri = 25l? and
the doping on the leads E = 0.4eV. As one can see on Fig.
4, just as in graphene, at low magnetic fields one can observe
conductance peaks corresponding to potential well energies
E ⇡ h2n2 [8m? (Ro�Ri)]

�1 which, along with increasing mag-
netic field, turn into Landau level resonances. The ballistic
transport regime estimated by the cyclotron radius

rc =

p
2m?E
~eB

& (Ro�Ri)/2. (10)

Outside this region, the conductance is strongly suppresed
by the magnetic field even at the Landau levels. It turns out
that conductance oscillations emerge in 2DEG as well yet
they vanish at high magnetic fields.
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