Pseudodiffusive conductance and Landau

level hierarchy in biased graphene bilayer

Grzegorz Rut and Adam Rycerz

Jagiellonian University, Reymonta 4, PL-30059 Krakow, Poland
grzegorz.rut@uj.edu.pl and rycerz@th.if.uj.edu.pl

We demostrate, by means of mode-matching analysis for the Dirac
equation, that splittings of the Landau-level (LL) degeneracies asso-
ciated with spin, valley, and layer degrees of freedom, directly af-
fect the ballistic conductance of graphene bilayer. For wide samples
(W > L), the Landauer-Bluttiker conductance reaches the maximum
G ~ se*/(mh) x W /L at the resonance via each LL, with the prefactor
varying from s = 8 if all three degeneracies are preserved, tos =1 if all
the degeneracies are lifted. Our results show that the charge transfer
at each LL has pseudodiffusive character, with the second and third cu-
mulant quantified by F = 1/3 and R = 1/15 (respectively). Moreover,
we show that if the electrochemical potential is not sharply defined but
slowly fluctuates in a finite vicinity of LL, the resulting charge trans-
fer characteristics are still quantum-limited, approaching F ~ 0.7 and
R ~ 0.5 in the limit of large fluctuations.

Model

We consider a rectangular, weakly doped bilayer flake be-
tween two heavily-doped strips modelling contacts (see Fig.
1). It is assumed that the magnetic field is applied only to the
central region. For the K valley the 4-band Hamiltonian of
such a system reads
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where 1, =~ 0.38eV is the interlayer nearest-neighbour hop-
ping energy, T /Vp = (—ih8¢+eA) Is the gauge-invariant

momentum with A = (0, —Bx) (B = 0 outside 0 < x < L) and
vr ~ ¢/300 is the Fermi velocity in a monolayer. U;(x) (with
j = 1,2 the layer index) is an electrostatic potential energy

(
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where V is the potentials difference between the layers,
v; = (—1)’ and gupBm is the Zeeman term (with m, = +1/2
the z-component of spin, for the numerical discussion g = 2).
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Figure 1: Schematics of system studied analytically in the
paper and energy band structure in the quantum Hall regime.
(a) A strip of graphene bilayer of width W attached to two
electrodes (shaded rectangles) at a distance L. A voltage
source drives a current through the sample area. (b,c) The
formation of Landau levels in bilayer graphene with and with-
out a band gap. Landau levels are indexed with the orbital
index n and the valley pseudospin (K or K’); the twofold spin
degeneracy of each level is assumed for clarity. Both layer
and valley degeneracies are splited in the presence of a band

gap (V > 0).

The conductance G, the Fano factor ¥ and the factor X,
quantifying the third cumulant of the charge transfer, are de-
rived by using the Landauer-Buttiker formula
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where T = t't and t is a and t is the transmission matrix.

Conductance

At zero doping and zero bias potential the transmission prob-
ability reads

T (ky) = cosh™> [ (k,—I5°L/2 £k, ) L], (6)

2
where k. = 1In LLJr\/l I (LQ) , and k, is the trans-
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verse momentum. Compared to the case of bilayer graphene
at zero magnetic field, the wave vector is shifted by —1;*L/2
(with [z = +/F/ |eB| the magnetic length). In case we neglect
the Zeeman splitting (g ~ 0) the conductance appears to be
field independent and twice as large as for the monolayer
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An even more interesting effect appears Iin the

presence of a bias field. From the normaliza-

tion condition of the wave functions one can ob-
tain the following equation for Landau’s energy levels

e+ 8% +£/(1-28¢e)24+12(e2—8)=2n—1, (8)
with n = O, I,..., € = E/(hVFlB), E = V/(thFlB) and
lL:ll/(hVFlB).
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Figure 2: Pseudodiffusive conductance at the doping E =
0.2¢, and the biasV =2-10"%*,. For the second (2LL) and
the third (3LL) Landau levels high magnetic field separates
the resonances corresponding to K’ and K valleys.

In the presence of bias field valley degeneracy is lifted along
with electron-hole symmetry. Because of valley splitting the
conductance per spin at LLs is two times smaller than in the
monolayer, G = GoW /(wL). The two lowest LLs (n = 0,n =
1) exist for electrons (holes) only for the K’ (K) valley.
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Figure 3: Transport regimes in unbiased bilayer graphene
(Zeeman splitting is not taken into account). Two contour
lines mark the areas with G/Gy > 8W /L (red) and G/G, <
2.4W /L (yellow) with W /L = 20. The dashed line corre-
sponds to the ballistic regime limit estimated with cyclotron
radius r,.

The effects of doping fluctuations

During long measurements doping control with sufficient pre-
cision might prove challenging, thus measured values of
transport-related quantities may turn out to be different form
those expected from basic theoretical models. We assume
that transmission probability can be with a good approxima-
tion written as

T (ky,x) ~ cosh™>[Lk,] / (14K, (9)

where L is a constant, x = 2(E — Ey)/ W with E, being
the resonant doping, 9 is the full width at half maximum
(FWHM) of the transmission resonance).

Placing (9) into the Landauer formula and integrating it
over all k, and fluctutions in the doping range E € |Ey —
AMWy/2,Ey + ANy /2] (A is a scaling factor) we obtain
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Figure 4: Fluctuation dependence of F and R_ factors in the
vicinity of 2LL at B = 5T. Dashed line corresponds to eq.
(10). At A=0 ¥ factor reaches its minimum, ¥ (0) = 1/3
and R (0) =1/15. R_reaches its minimum value at non-zero
fluctuations, namely R (A ~ 0.34) ~ 0.064 < 1/15.
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-ormulas (10) are a good estimation for relatively small fluc-
tuations (A < 2). In general L and W are not constant al-
though it is relatively easy to increase the accuracy of the es-
timation. The values of # and R at large fluctuations which
reach 0.7 and 0.5 respectively. What is noteworthy, (10) are
valid for the monolayer as well.

(10)

Conclusions

e The pseudodiffusive conductance of unbiased graphene
bilayer is twice as large as for the monolayer at the Dirac
point for arbitrary filed (OLL).

e At finite dopings (higher LLs) the bilayer conductance be-
comes equal to that of the monolayer.

e At finite bias potential, splittings of LLs corresponding to
K and K’ valleys lead to the pseudodiffisive conductance
reduced by the factor of 2.

e Both for the monolayer and bilayer graphene, doping fluc-
tuations may strongly affect transport characteristics. How-
ever, even for large fluctuations, the values of F and R are
predicted to be quantum-limited, i.e.f = 0.7 and R =0.5.
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