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We demostrate, by means of mode-matching analysis for the Dirac
equation, that splittings of the Landau-level (LL) degeneracies asso-
ciated with spin, valley, and layer degrees of freedom, directly af-
fect the ballistic conductance of graphene bilayer. For wide samples
(W � L), the Landauer-Büttiker conductance reaches the maximum
G ' se2/(ph)⇥W/L at the resonance via each LL, with the prefactor
varying from s = 8 if all three degeneracies are preserved, to s = 1 if all
the degeneracies are lifted. Our results show that the charge transfer
at each LL has pseudodiffusive character, with the second and third cu-
mulant quantified by F = 1/3 and R = 1/15 (respectively). Moreover,
we show that if the electrochemical potential is not sharply defined but
slowly fluctuates in a finite vicinity of LL, the resulting charge trans-
fer characteristics are still quantum-limited, approaching F ' 0.7 and
R ' 0.5 in the limit of large fluctuations.

Model

We consider a rectangular, weakly doped bilayer flake be-
tween two heavily-doped strips modelling contacts (see Fig.
1). It is assumed that the magnetic field is applied only to the
central region. For the K valley the 4-band Hamiltonian of
such a system reads
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where t? ⇡ 0.38eV is the interlayer nearest-neighbour hop-

ping energy,
*
p/nF =
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is the gauge-invariant

momentum with
*
A = (0,�Bx) (B = 0 outside 0 < x < L) and

nF ⇡ c/300 is the Fermi velocity in a monolayer. Uj(x) (with
j = 1,2 the layer index) is an electrostatic potential energy

Uj(x) =

(
U• if x < 0 or x > L,

g jV/2�gµBBms if 0 < x < L,
(2)

where V is the potentials difference between the layers,
g j = (�1) j and gµBBms is the Zeeman term (with ms =±1/2
the z-component of spin, for the numerical discussion g= 2).
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Figure 1: Schematics of system studied analytically in the
paper and energy band structure in the quantum Hall regime.
(a) A strip of graphene bilayer of width W attached to two
electrodes (shaded rectangles) at a distance L. A voltage
source drives a current through the sample area. (b,c) The
formation of Landau levels in bilayer graphene with and with-
out a band gap. Landau levels are indexed with the orbital
index n and the valley pseudospin (K or K0); the twofold spin
degeneracy of each level is assumed for clarity. Both layer
and valley degeneracies are splited in the presence of a band
gap (V > 0).

The conductance G, the Fano factor F and the factor R ,
quantifying the third cumulant of the charge transfer, are de-
rived by using the Landauer-Büttiker formula

G =
e2

h
TrT , (3)

F =
Tr [T (1�T )]

TrT
, (4)

R =
Tr [T (1�T )(1�2T )]

TrT
, (5)

where T = t†t and t is a and t is the transmission matrix.

Conductance

At zero doping and zero bias potential the transmission prob-
ability reads

T (ky) = cosh�2 ⇥�ky� l�2
B L/2± kc
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L
⇤
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, and ky is the trans-

verse momentum. Compared to the case of bilayer graphene
at zero magnetic field, the wave vector is shifted by �l�2

B L/2
(with lB =

p
~/ |eB| the magnetic length). In case we neglect

the Zeeman splitting (g ' 0) the conductance appears to be
field independent and twice as large as for the monolayer

G =
e2

h
8
p

W
L
. (7)

An even more interesting effect appears in the
presence of a bias field. From the normaliza-
tion condition of the wave functions one can ob-
tain the following equation for Landau’s energy levels

e2+d2±
p

(1�2de) 2+ t2 (e2�d2) = 2n�1, (8)

with n = 0,1, ..., e = E/(~nFlB), e = V/(2~nFlB) and
t = t?/(~nFlB).
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Figure 2: Pseudodiffusive conductance at the doping E =
0.2t? and the bias V = 2 ·10�4t?. For the second (2LL) and
the third (3LL) Landau levels high magnetic field separates
the resonances corresponding to K0 and K valleys.

In the presence of bias field valley degeneracy is lifted along
with electron-hole symmetry. Because of valley splitting the
conductance per spin at LLs is two times smaller than in the
monolayer, G = G0W/(pL). The two lowest LLs (n = 0,n =
1) exist for electrons (holes) only for the K’ (K) valley.
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Figure 3: Transport regimes in unbiased bilayer graphene
(Zeeman splitting is not taken into account). Two contour
lines mark the areas with G/G0 > 8W/L (red) and G/G0 <
2.4W/L (yellow) with W/L = 20. The dashed line corre-
sponds to the ballistic regime limit estimated with cyclotron
radius rc.

The effects of doping fluctuations

During long measurements doping control with sufficient pre-
cision might prove challenging, thus measured values of
transport-related quantities may turn out to be different form
those expected from basic theoretical models. We assume
that transmission probability can be with a good approxima-
tion written as

T (ky,k)⇡ cosh�2 [Lky]/
�
1+k2� , (9)

where L is a constant, k = 2(E � E0)/W with E0 being
the resonant doping, W is the full width at half maximum
(FWHM) of the transmission resonance).
Placing (9) into the Landauer formula and integrating it
over all ky and fluctutions in the doping range E 2 [E0 �
DW0/2,E0 + DW0/2] (D is a scaling factor) we obtain
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Figure 4: Fluctuation dependence of F and R factors in the
vicinity of 2LL at B = 5T. Dashed line corresponds to eq.
(10). At D = 0 F factor reaches its minimum, F (0) = 1/3
and R (0) = 1/15. R reaches its minimum value at non-zero
fluctuations, namely R (D ⇡ 0.34)⇡ 0.064 < 1/15.
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Formulas (10) are a good estimation for relatively small fluc-
tuations (D < 2). In general L and W are not constant al-
though it is relatively easy to increase the accuracy of the es-
timation. The values of F and R at large fluctuations which
reach 0.7 and 0.5 respectively. What is noteworthy, (10) are
valid for the monolayer as well.

Conclusions

• The pseudodiffusive conductance of unbiased graphene
bilayer is twice as large as for the monolayer at the Dirac
point for arbitrary filed (0LL).

•At finite dopings (higher LLs) the bilayer conductance be-
comes equal to that of the monolayer.

•At finite bias potential, splittings of LLs corresponding to
K and K’ valleys lead to the pseudodiffisive conductance
reduced by the factor of 2.

•Both for the monolayer and bilayer graphene, doping fluc-
tuations may strongly affect transport characteristics. How-
ever, even for large fluctuations, the values of F and R are
predicted to be quantum-limited, i.e.F = 0.7 and R = 0.5.
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