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Introduction

@ Part of a long-term project on global dynamics of nonlinear wave
equations (power nonlinearities, wave maps, Yang-Mills)

@ Goal: understanding of relaxation to a stationary equilibrium on an
unbounded domain through the dissipation of energy by dispersion

@ Our motivation comes from general relativity, in particular the problem of
formation of black holes in gravitational collapse

@ We want to construct a toy-model of which is as simple as possible:

» scalar semilinear equation with globally regular solutions
» unique nontrivial stationary equilibrium
> no unstable, neutral, or oscillatory modes

@ In order to design a model with these properties we consider equivariant
wave maps with a suitably chosen curved domain



Model
@ Wave maps u : .# — .4 are critical points of the action
S = /g“ﬁaaXA%XBGAB\/—gdx,

where (.# ,g4p) is a Lorentzian and (4", Gag) a Riemannian manifold.
e The wave map equation: [J,X* + T4 (X)deXBdgXC g =0
@ Domain: .# = {(t,r) € R? (¥, @) € S?} with metric

Sapdx®dxP = —dr? +dr’ + (* + a?) (d0? +sin’ ¥ d¢?)

@ The hypersurfaces t = const have two asymptotically flat ends at r — oo

connected by a neck of area 47a” at r = 0 (wormhole spacetime)
it




Equivariant wave map equation

@ Target: 4 = S? with the round metric
GapdXAdX® = dU? + sin® U(d®” + sin*@ dd?)

@ Equivariant ansatz: U = U(t,r),(0,®) = Q/(0,¢), where Q; : §? — §?
is @ harmonic eigenmap map with eigenvalue ¢(¢+ 1) (¢ € N).

@ Semilinear scalar wave equation

2r L(£+1) sin(20)
Utt:Urr+r2+a2 Ur_ ) r2+a2

@ The length scale a plays two roles:

> breaks scale invariance
» removes the singularity at r = 0 = global-in-time regularity

@ Recall that for a = 0 (flat domain R3*!) we have

» small data global-in-time existence and asymptotic decay to vacuum
» large data self-similar blowup in finite time



Static solutions
@ Conserved energy

1 [ .
E— 5/,00 (P +a®) (U2 + U2) + £(0+ 1) sin? U) dr
@ Finiteness of energy requires that U(t, —oo) = mx, U(t,0) = n7.
We choose m = 0 so n determines the topological degree of the map

@ For each n there exists a unique static solution U, (r) (harmonic map)
which minimizes the energy in its class (proof: shooting argument).

obrazki/wm_wh.pdf




Linear perturbations

o Substituting U(t,r) = U,(r) + € (2 +a2)~2v(r) into the wave map
equation and linearizing, we obtain the eigenvalue problem

a’ cos(2U,)
5 +L(L+1) Sia

LnViZ (7arr+Vn)V:72'2Va Vn(r):m

@ The operator L, has no negative eigenvalues. Proof: v, = v/r2 +a? U/ (r)
is the zero mode of the operator L,, — a®/(r* +a?)>.
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@ Quasinormal modes: eigenmodes l

satisfying v(r) ~ exp(FAr) for o5
r— oo for R(A) <0 o
@ R(A) tends rapidly to zero as ¢ o5l

grows (metastable trapping of ol

waves) % 4 2 o 2 4 6



Hyperboloidal initial value problem
@ We define new variables (—eo < s < 0o, —1/2 <y < 7/2)
s=t—\/r*+a*, y=arctan(r/a)
@ The wave map equation takes the form

: 1 + sin? Ll
Uss+2siny Uy + Tyy Us = cosszyy— (

+1)

sin(2U).

@ The Bondi-type energy
1 [7/2 d
=_ (U? +cos’y UZ + £(£ + 1) sin*U) J
2 —m/2 Y
@ Energy balance (U(s,y) ~ c+(s)cos(y) fory — £7/2)
d&
== (9) =)
@ Since the energy g(s) is positive and monotone decreasing, it has a

nonnegative limit for s — oo. It is natural to expect that this limit is given by
the energy of a static endstate of evolution.
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Soliton resolution conjecture

Conjecture

For any smooth initial data of degree n there exists a unique and smooth
global solution which converges asymptotically to the harmonic map U,,.

@ Note that this is a very strong non-perturbative assertion

@ Recently, an analogous result was proved for equivariant wave maps
exterior to a ball by Kenig, Lawrie, and Schlag. It seems feasible that their
proof can be adopted to our case.

@ We believe that the hyperboloidal approach is much better suited for
studying this and similar problems. Key advantages:

» dissipation of energy by radiation through null infinity is inherently
incorporated in this formulation

» pointwise convergence to the attractor on the entire spatial domain

» numerical analysis is relatively easy thanks to spatial compactification and
no boundary conditions at the endpoints



Numerical evidence - snaphots from the evolution
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Numerical evidence - pointwise convergence
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Quasinormal modes:
Ao =—0.53+1.57i
Ay =—0.11+0.51i
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Quasinormal modes:
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Ay = —0.013 4 0.68i
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Final remarks

@ Playing with domains of nonlinear wave equations one can construct toy
models for studying interesting physical phenomena (*designer” PDEs)

@ The hyperboloidal approach to the initial value problem is ideally suited for
studying the relaxation processes due to dispersive dissipation of energy

@ Can one turn the hyperboloidal flow method into the proof?



