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Introduction

Part of a long-term project on global dynamics of nonlinear wave
equations (power nonlinearities, wave maps, Yang-Mills)

Goal: understanding of relaxation to a stationary equilibrium on an
unbounded domain through the dissipation of energy by dispersion

Our motivation comes from general relativity, in particular the problem of
formation of black holes in gravitational collapse

We want to construct a toy-model of which is as simple as possible:
I scalar semilinear equation with globally regular solutions
I unique nontrivial stationary equilibrium
I no unstable, neutral, or oscillatory modes

In order to design a model with these properties we consider equivariant
wave maps with a suitably chosen curved domain
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Model
Wave maps u : M 7→N are critical points of the action

S =
∫

gαβ
∂αXA

∂β XBGAB
√
−gdx ,

where (M ,gαβ ) is a Lorentzian and (N ,GAB) a Riemannian manifold.

The wave map equation: �gXA +ΓA
BC(X)∂αXB∂β XCgαβ = 0

Domain: M = {(t,r) ∈ R2,(ϑ ,ϕ) ∈ S2} with metric

gαβ dxαdxβ =−dt2 +dr2 +(r2 +a2)(dϑ
2 + sin2

ϑ dϕ
2)

The hypersurfaces t = const have two asymptotically flat ends at r→±∞

connected by a neck of area 4πa2 at r = 0 (wormhole spacetime)
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Equivariant wave map equation
Target: N = S3 with the round metric

GABdXAdXB = dU2 + sin2 U(dΘ
2 + sin2

ΘdΦ
2)

Equivariant ansatz: U = U(t,r),(Θ,Φ) = Ω`(θ ,φ), where Ω` : S2 7→ S2

is a harmonic eigenmap map with eigenvalue `(`+1) (` ∈ N).

Semilinear scalar wave equation

Utt = Urr +
2r

r2 +a2 Ur−
`(`+1)

2
sin(2U)

r2 +a2

The length scale a plays two roles:
I breaks scale invariance
I removes the singularity at r = 0⇒ global-in-time regularity

Recall that for a = 0 (flat domain R3+1) we have

I small data global-in-time existence and asymptotic decay to vacuum
I large data self-similar blowup in finite time
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Static solutions
Conserved energy

E =
1
2

∫
∞

−∞

(
(r2 +a2)(U2

t +U2
r )+ `(`+1) sin2 U

)
dr

Finiteness of energy requires that U(t,−∞) = mπ , U(t,∞) = nπ .
We choose m = 0 so n determines the topological degree of the map

For each n there exists a unique static solution Un(r) (harmonic map)
which minimizes the energy in its class (proof: shooting argument).
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Linear perturbations

Substituting U(t,r) = Un(r)+ eλ t(r2 +a2)−
1
2 v(r) into the wave map

equation and linearizing, we obtain the eigenvalue problem

Lnv :=(−∂rr+Vn)v=−λ
2v , Vn(r)=

a2

(r2 +a2)2 +`(`+1)
cos(2Un)

r2 +a2

The operator Ln has no negative eigenvalues. Proof: vn =
√

r2 +a2 U′n(r)
is the zero mode of the operator Ln−a2/(r2 +a2)2.

Quasinormal modes: eigenmodes
satisfying v(r)∼ exp(∓λ r) for
r→±∞ for ℜ(λ ) < 0

ℜ(λ ) tends rapidly to zero as `
grows (metastable trapping of
waves)
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Hyperboloidal initial value problem
We define new variables (−∞ < s < ∞, −π/2 < y < π/2)

s = t−
√

r2 +a2 , y = arctan(r/a)

The wave map equation takes the form

Uss +2sinyUsy +
1+ sin2 y

cosy
Us = cos2yUyy−

`(`+1)
2

sin(2U) .

The Bondi-type energy

E =
1
2

∫
π/2

−π/2

(
U2

s + cos2yU2
y + `(`+1) sin2U

) dy
cos2y

Energy balance (U(s,y)∼ c±(s)cos(y) for y→±π/2)

dE

ds
=−ċ2

−(s)− ċ2
+(s)

Since the energy E (s) is positive and monotone decreasing, it has a
nonnegative limit for s→ ∞. It is natural to expect that this limit is given by
the energy of a static endstate of evolution.
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Soliton resolution conjecture

Conjecture
For any smooth initial data of degree n there exists a unique and smooth
global solution which converges asymptotically to the harmonic map Un.

Note that this is a very strong non-perturbative assertion

Recently, an analogous result was proved for equivariant wave maps
exterior to a ball by Kenig, Lawrie, and Schlag. It seems feasible that their
proof can be adopted to our case.

We believe that the hyperboloidal approach is much better suited for
studying this and similar problems. Key advantages:
I dissipation of energy by radiation through null infinity is inherently

incorporated in this formulation
I pointwise convergence to the attractor on the entire spatial domain
I numerical analysis is relatively easy thanks to spatial compactification and

no boundary conditions at the endpoints
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Numerical evidence - snaphots from the evolution
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n = 1 and `= 1.
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Numerical evidence - pointwise convergence
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Quasinormal modes:
λ0 =−0.53+1.57i
λ2 =−0.11+0.51i

Tail ∼ s−5

Quasinormal modes:
λ0 =−0.51+2.55i

λ2 =−0.013+0.68i

Tail ∼ s−6
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Final remarks

Playing with domains of nonlinear wave equations one can construct toy
models for studying interesting physical phenomena (”designer” PDEs)

The hyperboloidal approach to the initial value problem is ideally suited for
studying the relaxation processes due to dispersive dissipation of energy

Can one turn the hyperboloidal flow method into the proof?
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