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Anti-de Sitter (AdS) spacetime in d+1 dimensions

AdS is the maximally symmetric solution of the vacuum Einstein
equations Rαβ = λgαβ with negative λ

g =−(1+ r2/`2)dt2 +
dr2

1+ r2/`2 + r2dΩ
2
Sd−1

where `2 =−d/λ , r ≥ 0, and −∞ < t < ∞.

Substituting r = ` tanx (0≤ x < π/2) we get

g =
`2

cos2x

(
−dt2 +dx2 + sin2xdΩ

2
Sd−1

)

Conformal infinity x = π/2 is the timelike cylinder I = R×Sd−1

Null geodesics reach I in finite time so AdS is effectively bounded
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Is AdS stable?

By the positive energy theorem AdS space is the unique ground state
among asymptotically AdS spacetimes (much as Minkowski space is
the unique ground state among asymptotically flat spacetimes)

Minkowski spacetime was proved to be asymptotically stable by
Christodoulou and Klainerman (1993)

Key difference between Minkowski and AdS: the main mechanism of
stability of Minkowski - dissipation of energy by dispersion - is
absent in AdS (for no flux boundary conditions I acts as a mirror)

The problem of stability of AdS has not been explored until recently;
notable exception: proof of local well-posedness by Friedrich (1995)

The problem seems tractable only in spherical symmetry so one needs to
add matter to generate dynamics. Simple choice: a massless scalar field
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Convenient parametrization of 5D asymptotically AdS spacetimes

ds2 =
`2

cos2x

(
−Ae−2δ dt2 +A−1dx2 + sin2xdω

2
)

where A and δ are functions of (t,x).

Define m(t,x) = sin2 xsec4 x(1−A), Φ = ∂xφ and Π = A−1eδ ∂tφ

Field equations (using 8πG = 3)

∂tΦ = ∂x

(
Ae−δ

Π

)
, ∂tΠ =

1
tan3x

∂x

(
tan3xAe−δ

Φ

)
,

∂xm = tan3 xA
(
Φ

2 +Π
2) , ∂xδ =−sinxcosx

(
Φ

2 +Π
2)

Initial-boundary problem is locally well-posed under the following
boundary conditions near x = π/2 (Holzegel-Smulevici 2011)

φ ∼ (π/2− x)4 , δ ∼ (π/2− x)8 , 1−A = (π/2− x)4

We consider small perturbations of AdS space φ = 0,m = 0,δ = 0.
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AdS gravity with a spherically symmetric scalar field

Conjecture (B-Rostworowski 2011)
AdSd+1 (for d ≥ 3) is unstable under arbitrarily small perturbations

Arguments:

The linear spectrum is fully resonant. Nonlinear interactions between
harmonics give rise to transfer of energy from low to high frequencies.

The turbulent cascade leads to concentration of energy on finer and finer
spatial scales so eventually a black hole is expected to form.

Numerical evidence: perturbations of size ε collapse in time O(ε−2).

The shadow of a doubt: is extrapolation to ε → 0 justified?

New argument (this talk):

In the limit ε → 0 we construct an approximate solution that becomes
singular in time O(ε−2).

This result hints at a possible route to proving the conjecture.
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Nonlinear waves in confined geometries

Consider a nonlinear wave equation for φ(t,x) with (t,x) ∈ R×M,
where M is a compact Riemannian manifold with metric g.

Example: φtt−∆gφ +φ
3 = 0 for M = Td or Sd.

Goal: understand out-of-equilibrium dynamics of small solutions.

Due to the lack of dispersion the long-time dynamics is much more
complex and mathematically challenging than in the non-compact setting.

Is the ground state φ = 0 stable (say in H2 norm)?

This is an open problem even for φtt−φxx +φ 3 = 0 on S1 !

Key enemy: wave turbulence - transfer of energy to progressively
smaller scales causing gradual loss of smoothness as t→ ∞.
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Example: �gφ −φ 3 = 0 on AdS5

∂ttφ +Lφ + sec2xφ
3 = 0, L =− tan−3x∂x(tan3x∂x) (?)

Linear spectrum: Len = ω2
n en where ω2

n = (2n+4)2 (n = 0,1, . . . )

Plugging the mode expansion φ(t,x) = ∑n cn(t)en(x) into (?) we get

d2cn

dt2 +ω
2
n cn =∑

jkl
Ijkln cjckcl, Ijkln =−

π/2∫

0

ej(x)ek(x)el(x)en(x)sin3x cosxdx

In the interaction picture, defined by variation of constants,

cn = βneiωnt + β̄ne−iωnt,
dcn

dt
= iωn

(
βneiωnt− β̄ne−iωnt)

this becomes

2iωn
dβn

dt
= ∑

jkl
Ijkln cjckcl e−iωnt

Each term in the sum has a factor e−iΩt, where Ω = ωn±ωj±ωk±ωl.
Two kinds of terms: Ω = 0 (resonant) and Ω 6= 0 (non-resonant).
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Resonant approximation
We define the slow time τ = ε2t and rescale βn(t) = εαn(τ).

The non-resonant terms ∝ e−iΩτ/ε2
are highly oscillatory for small ε

and therefore negligible (at least for some time).

Keeping only the resonant terms (which is equivalent to time-averaging),
we obtain the infinite autonomous dynamical system (resonant system)

2iωn
dαn

dτ
= ∑

jkl
Ijkln αjαkᾱl ,

where the summation runs over the set of indices {jkl} for which Ω = 0
and Ijkln 6= 0. This set can be shown to reduce to {jkl | j+ k− l = n}.
The resonant system is invariant under the scaling αn(τ)→ ε−1αn(τ/ε2)

The resonant approximation is valid on the timescale O(ε−2). Thus,
on this timescale the dynamics of solutions of the cubic wave equation
is dominated by resonant interactions.
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Resonant approximation for the AdS Einstein-scalar system

At the lowest order the resonant system has the same form as above

2iωn
dαn

dτ
= ∑

j+k−l=n
Cjkln αjαkᾱl , (RS)

but the interaction coefficients Cjkln are very complicated.

(RS) was derived by Balasubramanian-Buchel-Green-Lehner-Liebling
and Craps-Evnin-Vanhoof (2014) using the multiscale perturbation
methods and the averaging method.

Remark: in the multiscale approach (RS) follows from elimination of
secular terms due to resonances at the third order of perturbation
expansion. The fact that all secular terms can be removed in this way has
been sometimes misunderstood as evidence for stability of AdS.

We shall analyze (RS) using numerical and asymptotic methods.
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Full GR evolution
We shall illustrate the numerical results using the time-symmetric
two-mode initial data φ(0,x) = ε

(1
4 e0(x)+ 1

6 e1(x)
)

Key observation (B-Rostworowski 2011): horizon forms in time
tH(ε)∼ ε−2

−4.5 −4 −3.5 −3

ln ε

5

7.5

ln
t H

This scaling suggests that the instability of AdS should be seen in the
resonant approximation.
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Truncated resonant approximation - numerics

For the numerical computation we truncate (RS) at N = 172 (TRS)

It is convenient to use the amplitude-phase representation αn = AneiBn

For the two-mode initial data the higher modes are quickly excited
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For early times An(τ)∼ τn−1 while the phases Bn(τ) evolve linearly.
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Later times
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A highly oscillatory behavior develops causing numerical difficulties.

The time-step of numerical integration, for which the algorithm is
convergent, tends to zero as the cutoff N increases.

This suggests that the solution of (RS) develops an oscillatory singularity
in some finite time τ∗.

Remark: for any finite N the solution of TRS can be numerically continued
past τ∗, however this ‘afterlife’ is an artifact of truncation.
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Analyticity strip method (Sulem-Sulem-Frisch 1983)

We make the ansatz An(τ)∼ n−γ(τ)e−ρ(τ)n for large n.

Fitting to the data we get

0.35 0.4 0.45 0.5

τ

0

0.1

0.2

ρ

0.49 0.5 0.51

−0.02

0

0.02

It appears that the ‘analyticity radius’ ρ(τ) tends to zero in a finite time τ∗.

Moreover, the fit reveals that limτ→τ∗ γ(τ) = 2.
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Resonant system

Substituting αn = AneiBn into (RS) one gets

2ωn
dAn

dτ
= ∑

j+k−l=n
j6=n,k 6=n

SjklnAjAkAl sin(Bn +Bl−Bj−Bk)

2ωn
dBn

dτ
= TnA2

n +∑
j6=n

RjnA2
j +A−1

n ∑
j+k−l=n
j6=n,k 6=n

SjklnAjAkAl cos(Bn +Bl−Bj−Bk)

Explicit expressions for the coefficients Tn, Rjn, and Sjkln were derived by
Craps-Evnin-Vanhoof (a remarkable tour de force calculation!)

We will argue that:

I the resonant system has a solution that becomes singular in finite time

I this singular solution governs the generic blowup
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Asymptotic analysis

We assume that An(τ)∼ n−2e−ρ0(τ∗−τ)n for large n and τ → τ∗

Asymptotic behavior of the interaction coefficients

Tn ∼ n5, Rjn ∼ n2j3, Sλ j,λk,λ l,λn ∼ λ
4 Sjkln

The latter implies that ∑
j+k−l=n
j 6=n,k 6=n

Sjkln(jkl)−2 = O(1)

It follows that for τ → τ∗

∑RjnA2
j ∼ n2

∑ j−1e−2ρ0(τ∗−τ)j ∼ n2 ln(τ∗− τ)

dBn

dτ
blows up logarithmically

Moreover, Bn behave linearly with n, hence Bn +Bl−Bj−Bk ≈ 0
for the resonant quartets (confirming that the ansatz is self-consistent).
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Numerical confirmation
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Performing this fit for all n > 20 we confirm that the coefficients an and bn vary linearly
with n, while τ∗ ≈ 0.509 does not depend on n. The blowup time τ∗ is close to the
collapse time for the true solution τH := limε→0 ε−2tH(ε)≈ 0.514.
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How good is the resonant approximation?
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Energy spectrum
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Conclusions

Dynamics of asymptotically AdS spacetimes is an interesting meeting
point of basic problems in general relativity and PDE theory.

Understanding of out-of-equilibrium dynamics of small solutions is
mathematically challenging even for the simplest nonlinear wave
equations on compact manifolds, let alone Einstein’s equations.

For AdS-Einstein-scalar equations, we have constructed the asymptotic
solution of the resonant system that becomes singular in finite time.
Numerics shows that this solution acts as a universal attractor for blowup.

Key question: how to transfer this blowup result from the resonant system
to the full system? It is not clear to us what (if any) is the physical
interpretation of the oscillatory singularity for the resonant system.

Nonetheless, the fact that solutions of the resonant system blow up in
finite time (for typical initial data) strongly indicates that the corresponding
solutions of the full system collapse on the timescale O(ε−2).
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