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Introduction

@ Part of a long-term project on global dynamics of nonlinear wave
equations (wave maps, Yang-Mills equations, Einstein equations).

@ Our approach is not rigorous - what we do can be described as:
the physics of the mathematics of the physics (M. Berry)

@ Goal: understanding of relaxation to a stationary equilibrium on an
unbounded domain through the dissipation of energy by dispersion.

@ The emitted radiation encodes information about an attractor.

@ Example: the mass and spin of a stationary black hole can be read off
from characteristic frequencies of gravitational waves emitted in the
process relaxation to the equilibrium (so called ringdown).
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Soliton resolution conjecture

Solutions of dispersive wave equations asymptotically resolve into a
superposition of a coherent structure (soliton, black hole,...) and radiation.

@ Mathematical understanding of this conjecture is rather limited, especially
in the nonperturbative regime (for initial data far from the equilibrium).

@ We want to design a simple playground for studying this conjecture.

@ The desired properties of a toy model:
» evolution is globally regular
» there is a unique stable (nontrivial) stationary equilibrium
» the equilibrium solution is rigid
» there are no oscillatory modes

@ To construct such a model we consider equivariant wave maps into
the 3-sphere with a suitably chosen curved manifold as a domain.



Equivariant wave maps

@ Let U : M +— N be a map from a Lorentzian manifold (M, g) into a
Riemannian manifold (N, G).

@ Domain M: ultrastatic spherically symmetric spacetime with the metric

g = —df* +dr* + R*(r) (d®* 4 sin*9d¢?)

@ Target: N = S? with the round metric G = du? + sin® u (d6?% + sin*0d¢?).

@ Equivariant ansatz: u = u(t,r),(0,¢) = x:(6,¢), where
xe 2 S? — S? is an eigenmap map with eigenvalue £(£+ 1) (¢ € N).
o Let Wyp = 8aUA8ﬁ UB G4p. The wave map action is

s 2
S:/ gaﬁWaBdVM:m/<—u$+u§+£(£+1)5m2”> R2dr di
M R

which gives the equivariant wave map equation

B 2R'(r) 0(0+1) sin(2u)
B T B A 105
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Minkowski background

2 0(+1) sin(2u)

Uy = Upr + — Uy —
r 2 r2

Scaling symmetry u(t,r) — uy (t,r) = u(t/A,r/A).

Supercritical scaling of energy E(uy ) = AE(u).

No static solutions (harmonic maps) with finite nonzero energy.

Small data: solutions are global in time and decay (nonlinearly) to zero

(t,r) A7 for t—
u V) ~ oo
) <t7r>£+l<t+r>g+1

Large data: self-similar blowup in finite time

r

u(t,r) NS(T—I) for t /T

16



Wormhole background
@ Domain M = {t € R,(r, 9, ¢) € R x S?} with metric

g = —dt* +dr* + (r* + %) (d®* +sin’¥dp?)

@ Hypersurfaces ¢t = const have two asymptotically flat ends at r — £
connected by a neck of area 4wa® at r = 0.




Equivariant wave map equation on the wormhole

2r _ A(¢+1) sin(2u)
r2+a? thr 2 r24a?

Uy = Uy +

@ The length scale a plays two roles:

» removes the singularity at r = 0 = global-in-time regularity
> breaks scale invariance = allows for harmonic maps

@ The equation is truly 1+ 1 dimensional (—eco < r < o0), yet it inherits
strong dispersive decay from the original 3 + 1 dimensional problem.

@ There are close analogies between this equation and the exterior wave
map equation (B-Chmaj-Maliborski, Kenig-Lawrie-Liu-Schlag).

@ Conserved energy

1
/[ +u —|— b )sm u| (* +a*)dr
"2 +

@ Finiteness of energy requires that u(z, —e0) = mm, u(t,) = nr.

We choose m = 0 so n determines the topological degree of the map.



Harmonic maps

2r ., L(l+1)

——————sin(2U) =0.
r? +a? 2(r* +a?) 2]

U// +

Theorem
For any given ¢ there exists a unique smooth harmonic map U,, of degree n. J

Proof: elementary shooting argument

2 U,

o N
L




Linear perturbations

e Substituting u(,r) = U,(r) + e* (> + a*)~2v(r) into the wave map
equation and linearizing, we obtain the eigenvalue problem

2

o Y _a cos(2U,)
an.— (—8rr—|—Vn)V——A v, Vn(r)—m+€(€+l)m

@ The operator L, has no negative eigenvalues. Proof: v, = (r* +a?) U/ (r)
is the zero mode of the operator L, — a®/(r* +a?)>.
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@ Quasinormal modes: ‘outgoing’
0.5F

solutions v(r) ~ exp(FAr) for <

r— +eoand R(A) <0 °
@ R(A) tends rapidly to zero as ¢ 0%

grows (metastable trapping) -1t
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Hyperboloidal initial value problem

@ We define a new ("hyperboloidal”) time coordinate

s=t—\Vrt+a?

@ The wave map equation takes the form (hereafter, we seta = 1)

2r2 41 5 +1) .
Ugs +2rvV r2 +1ug + st us = ((r’ + l)ur)r - sin(2u)

@ The associated energy
1 oo
é”(u)=§/ (2 + (P + 1) uf + £(+ 1) sin’u) dr

is radiated away through null infinities

d& P 5
= e (8) =),
where
c_ = r1_1>r£1wru(s,r), cp = }Egr(u(s,r) —nn)

are the radiation coefficients.
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Hyperboloidal soliton resolution conjecture

@ The energy &(s) is positive and non-increasing, hence it has a limit for

s — oo, It is natural to expect that this limit is given by the energy of the
harmonic map.

Conjecture

For any smooth initial data of degree n there exists a unique smooth global
solution which converges asymptotically to the harmonic map U,,.

@ An analogous result was proven for equivariant wave maps exterior to a
ball by Kenig-Lawrie-Liu-Schlag (without the rate of convergence).

@ The hyperboloidal approach (due to Friedrich and Zenginoglu) seems
ideally suited for this purpose. Key advantages:

» dissipation of energy by radiation through null infinity is inherently
incorporated in this formulation

> pointwise convergence to the attractor on the entire spatial domain
» easy to implement numerically (no artificial boundary conditions)
However, the evolution is only semi-global in space and forward in time.
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Numerical solutions

@ We compactify the spatial domain —eo < r < oo to the interval
[—m/2, /2] by the transformation y = arctan(r). Then

. 1 + sin®
Uss +28iny gy + LSy Uy = coszy Uyy —
cosy

+1)

sin(2u) (%)

@ There are no ingoing characteristics at the boundaries, hence
no boundary conditions are required (or allowed).

@ We solve equation (x) for smooth initial data u(0,y), us(0,y).

@ Quasinormal modes are honest eigenfunctions of the quadratic

eigenvalue problem
(A, +AB+A*)v=0,

1 +sin’y

A= —cos?ydy, +L(£+1) cos(2U,), B=2sinyd,+ -
sy
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Numerical evidence
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Snaphots from the evolution of ‘generic’ initial data forn =1 and £ = 1.
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Numerical evidence - rate of convergence
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Quasinormal modes:
A= —0.53+1.57i
A= —0.11+0.51i

ci(s) ~s73

Quasinormal modes:
Ao = —0.51+2.55i
A = —0.0134+0.68i

ci(s) ~s73
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Conclusion

@ The hyperboloidal approach to the initial value problem is ideally suited for
studying the relaxation processes due to dispersive dissipation of energy.

@ | hope that this approach will attract more attention in the PDE community.
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