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Introduction

Part of a long-term project on global dynamics of nonlinear wave
equations (wave maps, Yang-Mills equations, Einstein equations).

Our approach is not rigorous - what we do can be described as:
the physics of the mathematics of the physics (M. Berry)

Goal: understanding of relaxation to a stationary equilibrium on an
unbounded domain through the dissipation of energy by dispersion.

The emitted radiation encodes information about an attractor.

Example: the mass and spin of a stationary black hole can be read off
from characteristic frequencies of gravitational waves emitted in the
process relaxation to the equilibrium (so called ringdown).
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Soliton resolution conjecture
Solutions of dispersive wave equations asymptotically resolve into a
superposition of a coherent structure (soliton, black hole,...) and radiation.

Mathematical understanding of this conjecture is rather limited, especially
in the nonperturbative regime (for initial data far from the equilibrium).

We want to design a simple playground for studying this conjecture.

The desired properties of a toy model:

I evolution is globally regular

I there is a unique stable (nontrivial) stationary equilibrium

I the equilibrium solution is rigid

I there are no oscillatory modes

To construct such a model we consider equivariant wave maps into
the 3-sphere with a suitably chosen curved manifold as a domain.
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Equivariant wave maps
Let U : M 7→ N be a map from a Lorentzian manifold (M,g) into a
Riemannian manifold (N,G).

Domain M: ultrastatic spherically symmetric spacetime with the metric

g =−dt2 +dr2 +R2(r)(dϑ
2 + sin2

ϑdϕ
2)

Target: N = S3 with the round metric G = du2 + sin2 u(dθ 2 + sin2
θdφ 2).

Equivariant ansatz: u = u(t,r),(θ ,φ) = χ`(θ ,φ), where
χ` : S2 7→ S2 is an eigenmap map with eigenvalue `(`+1) (` ∈ N).

Let Wαβ = ∂αUA∂β UB GAB. The wave map action is

S =
∫

M
gαβ Wαβ dvM = 4π

∫ (
−u2

t +u2
r + `(`+1)

sin2 u
R2

)
R2 dr dt

which gives the equivariant wave map equation

utt = urr +
2R′(r)
R2(r)

ur−
`(`+1)

2
sin(2u)
R2(r)
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Minkowski background

utt = urr +
2
r

ur−
`(`+1)

2
sin(2u)

r2

Scaling symmetry u(t,r) 7→ uλ (t,r) = u(t/λ ,r/λ ).

Supercritical scaling of energy E(uλ ) = λE(u).

No static solutions (harmonic maps) with finite nonzero energy.

Small data: solutions are global in time and decay (nonlinearly) to zero

u(t,r)∼ Ar`

〈t− r〉`+1〈t+ r〉`+1 for t→ ∞

Large data: self-similar blowup in finite time

u(t,r)∼ S
(

r
T− t

)
for t↗ T
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Wormhole background

Domain M = {t ∈ R,(r,ϑ ,ϕ) ∈ R×S2} with metric

g =−dt2 +dr2 +(r2 +a2)(dϑ
2 + sin2

ϑdϕ
2)

Hypersurfaces t = const have two asymptotically flat ends at r→±∞

connected by a neck of area 4πa2 at r = 0.
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Equivariant wave map equation on the wormhole

utt = urr +
2r

r2 +a2 ur−
`(`+1)

2
sin(2u)
r2 +a2

The length scale a plays two roles:
I removes the singularity at r = 0⇒ global-in-time regularity
I breaks scale invariance⇒ allows for harmonic maps

The equation is truly 1+1 dimensional (−∞ < r < ∞), yet it inherits
strong dispersive decay from the original 3+1 dimensional problem.

There are close analogies between this equation and the exterior wave
map equation (B-Chmaj-Maliborski, Kenig-Lawrie-Liu-Schlag).

Conserved energy

E(u) =
1
2

∞∫
−∞

[
u2

t +u2
r +

`(`+1)
r2 +a2 sin2 u

]
(r2 +a2)dr

Finiteness of energy requires that u(t,−∞) = mπ , u(t,∞) = nπ .
We choose m = 0 so n determines the topological degree of the map.
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Harmonic maps

U′′+
2r

r2 +a2 U′− `(`+1)
2(r2 +a2)

sin(2U) = 0 .

Theorem
For any given ` there exists a unique smooth harmonic map Un of degree n.

Proof: elementary shooting argument

U1

U2
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Linear perturbations

Substituting u(t,r) = Un(r)+ eλ t(r2 +a2)−
1
2 v(r) into the wave map

equation and linearizing, we obtain the eigenvalue problem

Lnv :=(−∂rr+Vn)v=−λ
2v , Vn(r)=

a2

(r2 +a2)2 +`(`+1)
cos(2Un)

r2 +a2

The operator Ln has no negative eigenvalues. Proof: vn = (r2 +a2)U′n(r)
is the zero mode of the operator Ln−a2/(r2 +a2)2.

Quasinormal modes: ‘outgoing’
solutions v(r)∼ exp(∓λ r) for
r→±∞ and ℜ(λ ) < 0

ℜ(λ ) tends rapidly to zero as `
grows (metastable trapping)
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Hyperboloidal initial value problem
We define a new (”hyperboloidal”) time coordinate

s = t−
√

r2 +a2

The wave map equation takes the form (hereafter, we set a = 1)

uss +2r
√

r2 +1usr +
2r2 +1√

r2 +1
us =

(
(r2 +1)ur

)
r−

`(`+1)
2

sin(2u)

The associated energy

E (u) =
1
2

∫
∞

−∞

(
u2

s +(r2 +1)u2
r + `(`+1) sin2u

)
dr

is radiated away through null infinities

dE

ds
=−ċ2

−(s)− ċ2
+(s) ,

where
c− = lim

r→−∞
ru(s,r), c+ = lim

r→∞
r(u(s,r)−nπ)

are the radiation coefficients.
11 / 16



Hyperboloidal soliton resolution conjecture
The energy E (s) is positive and non-increasing, hence it has a limit for
s→ ∞. It is natural to expect that this limit is given by the energy of the
harmonic map.

Conjecture
For any smooth initial data of degree n there exists a unique smooth global
solution which converges asymptotically to the harmonic map Un.

An analogous result was proven for equivariant wave maps exterior to a
ball by Kenig-Lawrie-Liu-Schlag (without the rate of convergence).

The hyperboloidal approach (due to Friedrich and Zenginoğlu) seems
ideally suited for this purpose. Key advantages:

I dissipation of energy by radiation through null infinity is inherently
incorporated in this formulation

I pointwise convergence to the attractor on the entire spatial domain
I easy to implement numerically (no artificial boundary conditions)

However, the evolution is only semi-global in space and forward in time.
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Numerical solutions

We compactify the spatial domain −∞ < r < ∞ to the interval
[−π/2,π/2] by the transformation y = arctan(r). Then

uss +2sinyusy +
1+ sin2 y

cosy
us = cos2yuyy−

`(`+1)
2

sin(2u) (?)

There are no ingoing characteristics at the boundaries, hence
no boundary conditions are required (or allowed).

We solve equation (?) for smooth initial data u(0,y), us(0,y).

Quasinormal modes are honest eigenfunctions of the quadratic
eigenvalue problem

(An +λ B+λ
2I)v = 0 ,

A =−cos2y∂yy + `(`+1) cos(2Un), B = 2siny∂y +
1+ sin2 y

cosy
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Numerical evidence

Snaphots from the evolution of ‘generic’ initial data for n = 1 and `= 1.
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Numerical evidence - rate of convergence
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Quasinormal modes:
λ0 =−0.53+1.57i
λ2 =−0.11+0.51i

c±(s)∼ s−3

Quasinormal modes:
λ0 =−0.51+2.55i

λ2 =−0.013+0.68i

c±(s)∼ s−3
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Conclusion

The hyperboloidal approach to the initial value problem is ideally suited for
studying the relaxation processes due to dispersive dissipation of energy.

I hope that this approach will attract more attention in the PDE community.
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