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Anti-de Sitter (AdS) spacetime in d+1 dimensions

AdS is the maximally symmetric solution of the vacuum Einstein
equations Rαβ = λgαβ with negative λ

g =−(1+ r2/`2)dt2 +
dr2

1+ r2/`2 + r2dΩ
2
Sd−1

where `2 =−d/λ , r ≥ 0, and −∞ < t < ∞.

Substituting r = ` tanx (0≤ x < π/2) we get

g =
`2

cos2x

(
−dt2 +dx2 + sin2xdΩ

2
Sd−1

)
Conformal infinity x = π/2 is the timelike cylinder I = R×Sd−1

Null geodesics reach I in finite time so AdS is effectively bounded
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AdS is the most popular spacetime on the arXiv (due to AdS/CFT)
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Is AdS stable?

By the positive energy theorem AdS space is the unique ground state
among asymptotically AdS spacetimes (much as Minkowski space is
the unique ground state among asymptotically flat spacetimes)

Minkowski spacetime was proved to be asymptotically stable by
Christodoulou and Klainerman (1993)

Key difference between Minkowski and AdS: the main mechanism of
stability of Minkowski - dissipation of energy by dispersion - is
absent in AdS (for no flux boundary conditions I acts as a mirror)

The problem of stability of AdS has not been explored until recently;
notable exception: proof of local well-posedness by Friedrich (1995)

The problem seems tractable only in spherical symmetry so one needs to
add matter to generate dynamics. Simple choice: a massless scalar field
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AdS gravity with a spherically symmetric scalar field

Conjecture (B-Rostworowski 2011)

AdSd+1 (for d ≥ 3) is unstable under arbitrarily small perturbations

Heuristic picture (supported by a nonlinear perturbation analysis and
numerical evidence): due to resonant interactions between harmonics the
energy is transferred from low to high frequencies. The concentration of
energy on finer and finer scales inevitably leads to the formation of a horizon
(the endstate of instability is the Schwarzschild-AdS black hole)

Some follow-up studies:

The turbulent instability is absent for some perturbations, in particular
there is analytic and numerical evidence for the existence of stable
time-periodic solutions (Maliborski-Rostworowski 2013)

In 2+1 dimensions small perturbations of AdS3 remain smooth for all
times but their radius of analyticity shrinks to zero as t→ ∞ and
higher Sobolev norms grow unbounded (B-Jałmużna 2013)
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Energy spectrum for d = 3
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7 / 20



Energy spectrum for d = 2
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Part 2
Trying to gain insight into the dynamics of asymptotically AdS spacetimes
through simple nonlinear wave equations on spatially bounded domains

Motto: The more he looked inside the more Piglet wasn’t there.
Winnie-the -Pooh
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Nonlinear waves on bounded domains

Example: utt−∆u+u3 = 0 for u(t,x) with x ∈M (compact manifold)

Due to the lack of dispersion the long-time dynamics is much more
complex and mathematically challenging than in the non-compact setting

The main goal: understand out-of-equilibrium dynamics of small solutions

Is the ground state u = 0 stable (say in H2 norm)?

This is an open problem even for utt−uxx +u3 = 0 on S1 !

Key enemy: weak turbulence - transfer of energy to progressively
smaller scales (gradual loss of smoothness as t→ ∞)
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General strategy for small initial data

Let en(x) and ω2
n be the eigenfunctions and eigenvalues of −∆ on M

Decompose u(t,x) = ε ∑n an(t)en(x) and rewrite the equation on the
Fourier side as an infinite dimensional dynamical system

än +ω
2
n an = ε

2
∑cn

jkmajakam, cn
jkm = (ejekem,en)

The entire information about the dynamics is contained in the frequencies
ωn and the interaction coefficients cn

jkm

Are there non-trivial resonances (ωn =±ωj±ωk±ωm for cn
jkm 6= 0)?

I If not: try to construct the solutions perturbatively (for example, using the
method of normal forms). Main difficulty: small divisors.

I If yes: drop all non-resonant terms and hope that the remaining resonant
system is amenable to mathematical analysis

Key object of interest: evolution of the energy spectrum
En(t) = ȧ2

n +ω2
n a2

n. The transfer of energy to high fequencies can be

measured by Sobolev norms ‖u(t)‖s =
(
∑ω2s

n a2
n
)1/2

with s > 1.
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Example: cubic Klein-Gordon equation on S1

Plugging u(t,x) = ε ∑
n∈Z

an(t)einx into utt−uxx +µ2u+ |u|2u = 0 gives

än +ω
2
n an =−ε

2
∑

j−k+m=n
ajākam

Interaction picture (variation of constants)

an = a+n (t)e
iωnt +a−n (t)e

−iωnt, ȧn = iωn
(
a+n (t)e

iωnt−a−n (t)e
−iωnt)

leads to the first order system (Ω =±ωj±ωk±ωm∓ωn)

±2in ȧ±n = ε
2

∑
j−k+m=n

permutations of ±

a±j ā±k a±m eiΩt

Resonant terms correspond to Ω = 0 and j− k+m = n. For nonzero
mass µ there are no exact resonances (ωn =

√
n2 +µ2). For µ = 0,

after dropping all non-resonant terms, one gets the resonant system

±2in ȧ±n = ε
2

∑
j−k+m=n

a±j ā±k a±m +2ε
2

(
∑
k
|a∓k |2

)
a±n
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Numerical results

We solve numerically utt−uxx +µ2u+u3 = 0 on the interval −1≤ x≤ 1
with periodic boundary conditions for various initial data Start movie

For (small) initial data, after a very short time we observe the formation of
a coherent structure with the exponentially decaying energy spectrum
Ek(t)∼ e−2ρ(t)k. The radius of analyticity ρ(t) quickly stabilizes at some
(approximately) constant value (the Sobolev norms stop growing)

Suprisingly, the dynamics for µ = 0 and µ 6= 0 are similar Start movie

Analogous behaviour in higher dimensions Start movie

It is conceivable that this coherent structure is a transient metastable
state with an extremely long lifetime (cf. the Fermi-Pasta-Ulam paradox)

What is the mechanism of the saturation of the energy transfer?
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Yang-Mills on the Einstein universe

Manifold M = R×S3 with the metric

g =−dt2 +dx2 + sin2x(dϑ
2 + sin2

ϑ dϕ
2)

Spherically symmetric (magnetic) ansatz for the SU(2) Yang-Mills
connection

A = W(t,x)τ1dϑ +(cotϑ τ3 +W(t,x)τ2)sinϑ dϕ

The YM equations ∇µFµν +[Aµ ,Fµν ] = 0 reduce to

Wtt = Wxx +
W(1−W2)

sin2x

For smooth initial data the solutions remain smooth for all times
(Choquet-Bruhat 1989, Chruściel-Shatah 1997)
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The conserved energy E =
∫

π

0

(
W2

t +W2
x +

(1−W2)2

2sin2x

)
dx

W(t,0) =±1 and W(t,π) =±1⇒ two topological sectors N = 0,1.

In each sector there is a unique static solution:
W0 = 1 (vacuum) with E = 0 and W1 = cosx (kink) with E = 3π/4.

Linearized perturbations u = W−WN around the static solutions satisfy

utt +Lu = 0 , L =− d2

dx2 +
3W2

N−1
sin2 x

The operator L is essentially self-adjoint on L2([0,π],dx).

The eigenvalues and (orthonormal) eigenfunctions of L are (k = 0,1, ...)

ω
2
k = (2+ k)2 for N = 0 and ω

2
k = (2+ k)2−3 for N = 1

e0 =
√

8
3π

sin2x, e1 =
√

16
π

sin2xcosx, e2 =
√

32
15π

sin2x(6cos2x−1), ....
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Numerical results

Transfer of energy to high frequencies gets frozen after some time
Start movie

Sobolev norms (s = 1, ...,7) for a gaussian perturbation of W0
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Evidence for (meta)stability of W0
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Equivariant wave maps from R×S3 into S3

Utt = Uxx +
2cosx
sinx

Ux−
sin(2U)

sin2x

Self-similar blowup Ux(t,0)∼ b(T− t)−1 as t↗ T for large data;
the same as in Minkowski space (blowup does not see the curvature)

Is there a threshold for blowup? One may speculate that the lack of
dispersion combined with the supercritical scaling of energy can lead to
blowup for arbitrarily small perturbations (as in the case of AdS)

Numerical simulations do not support this speculation: it seems that for
generic one-parameter families of initial data U(0,x) = εf (x) there is a
critical amplitude ε∗ below which the solutions are globally regular in time

The linear spectrum is not resonant. Is this fact responsible for the
existence of threshold for blowup?
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Wave-map type equations on AdS

Utt = Uxx +
d−1

cosxsinx
Ux−

F(U)

sin2x
(t,x) ∈ R× [0,π/2)

Example: d = 4, F(U) = 4
3(e
−2U− e−8U)

Fully resonant spectrum:
ωk = 6+2k

Formation of the energy
cascade with a power-law
spectrum and the blowup of
Uxx(t,0) in a finite time T .
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For initial data of size ε , it appears that T(ε)∼ ε−2

Warning: more precise numerical simulations are needed to confirm
these preliminary observations and formulate convincing conjectures
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Conclusions

Dynamics of asymptotically AdS spacetimes is an interesting meeting
point of basic problems in general relativity and PDE theory.

Understanding of an out-of-equilibrium dynamics of small solutions is
mathematically challenging even for the simplest nonlinear wave
equations on compact manifolds, let alone the Einstein equations.

Most of the above simple models exhibit a qualitatively different behaviour
than Einstein-AdS equations so they are not good toy models.
Nonetheless, they help us understand how special Einstein’s equations
are (and they are interesting on their own).

Wave maps on AdS seem to be a good playground for gaining insight into
the turbulent instability of AdS
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