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Anti-de Sitter spacetime in d+1 dimensions
AdSd+1 can be defined as the quadric

X2
1 + · · ·+X2

d−U2−V2 =−l2

embedded in a flat d+2 dimensional space with metric

ds2 = dX2
1 + · · ·+dX2

d−dU2−dV2

For X = rω,U =
√

r2 + l2 sin(t/l),V =
√

r2 + l2 cos(t/l)
the induced metric on the quadric

g =−(1+ r2/l2)dt2 +
dr2

1+ r2/l2
+ r2dω

2
Sd−1

solves the vacuum Einstein equations Gαβ +Λgαβ = 0 with

Λ =− 2
d(d−1)l2

. The (maximal) symmetry group is O(2,d−1).

In the following by AdS we mean the universal covering space with the
time coordinate t unrolled to (−∞,∞).
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Causal structure

Using x = arctan(r/l) ∈ [0,π/2) we get

g =
l2

cos2x

(
−dt2 +dx2 + sin2xdω

2
Sd−1

)

Spatial infinity x = π/2 is the timelike cylinder I = R×Sd−1 with the
conformal boundary metric ds2

I =−dt2 +dΩ2
Sd−1

Null geodesics get to infinity in finite time

AdS is not globally hyperbolic

Asymptotically AdS spacetimes by
definition have the same conformal
boundary as AdS

?t

x = 0 x = π
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Brief history of AdS

AdS metric: A. Friedmann, On the possibility of a world with a constant
negative curvature of space, Zeitschrift für Physik 21, 326 (1924)

“de Sitter universe with K negative involves ideas of altogether too
revolutionary a character for physics as it exists today.”
J.L. Synge in Relativity: The General Theory (1960)

Linear stability : P. Breitenlohner and D.Z. Freedman, Stability of gauge
extended supergravity, Annals of Physics 14, 249 (1982)

Local well-posedness of the initial-boundary value problem for 4-dim
vacuum Einstein’s equations with AdS asymptotics:
H. Friedrich, Einstein equations and conformal structure: existence of
anti-de Sitter-type space-times, J. Geom. Phys. 17, 125 (1995)

AdS/CFT duality: J. Maldacena, The large N limit of superconformal field
theories and supergravity, Adv. Theor. Math. Phys. 2, 231 (1998)
(cited 13665 times)
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Is AdS stable?
By the positive energy theorem AdS space is the unique ground state
among asymptotically AdS spacetimes (much as Minkowski space is
the unique ground state among asymptotically flat spacetimes).

Basic question for any equilibrium solution: do small perturbations at
t = 0 remain small for all future times?

Minkowski space is asymptotically stable (Christodoulou-Klainerman ’93)

Key difference between Minkowski and AdS: the main mechanism of
stability of Minkowski - dissipation of energy by dispersion - is
absent in AdS (for no-flux boundary conditions I acts as a mirror).

Stability of AdS has not been explored until ’11; notable exceptions:
local well-posedness (Friedrich ’95), boundedness of linearized
perturbations (Ishibashi-Wald ’04), rigidity (Anderson ’06):

One expects that gAdS is in fact dynamically stable, with the
behavior of the nonlinear exact solutions nearby to gAdS
well-modeled on the linearized behavior.
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AdS gravity coupled to a spherically symmetric scalar field

Rαβ −
1
2

gαβ R+Λgαβ = 8πTαβ , Λ =−d(d−1)
2l2

Tαβ = ∂αφ ∂β φ − 1
2
(
(∂φ)2 +m2

φ
2) gαβ

�gφ −m2
φ = 0

All fields are assumed to be spherically symmetric. For y = π/2− x→ 0

φ(t,x)∼ c+(t)y
d
2+ν + c−(t)y

d
2−ν , ν

2 =
d2

4
+m2l2

”Reflective” boundary conditions: Dirichlet (c− = 0) or Robin (c++bc− = 0).

For ν2 ≥ 1 the initial-boundary value is locally well-posed only for the
Dirichlet boundary conditions (Holzegel-Smulevici ’11)

For ν2 = 1/4 the system is conformally well-behaved at I and more
general boundary conditions (both reflective and dissipative) are allowed
(Holzegel-Warnick ’13, Holzegel-Luk-Smulevici-Warnick ’15).
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Convenient parametrization of asymptotically AdS spacetimes

ds2 =
l2

cos2x

(
−Ae−2δ dt2 +A−1dx2 + sin2xdω

2
Sd−1

)

where A and δ are functions of (t,x)

Define mass function µ(t,x) =
sind−2 x
cosd x

(1−A) and auxiliary variables

Φ = φ ′ and Π = A−1eδ φ̇ (where ′ = ∂x,˙= ∂t)
Field equations (using 8πG = d−1) for m = 0

Φ̇ =
(

Ae−δ
Π

)′
, Π̇ =

1
tand−1x

(
tand−1xAe−δ

Φ

)′

µ
′ = sinxcosxA

(
Φ

2 +Π
2) , δ

′ =−sinxcosx
(
Φ

2 +Π
2)

Dirichlet boundary conditions at y = π/2− x = 0

φ ∼ yd, δ ∼ y2d, 1−A = yd

The total mass M = limx→π/2 µ(t,x) is conserved

Sample initial data: Φ(0,x) = 0,Π(0,x) = ε exp
(
− tan2 x

σ2

)
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Conjecture (B-Rostworowski ’11)
AdSd+1, as the solution of the Einstein-massless-scalar field equations with
negative cosmological constant in d+1 dimensions (for d ≥ 3), is unstable
under arbitrarily small generic perturbations.

Key numerical evidence:
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Gaussian perturbations of size ε collapse in time O(ε−2).
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Multi-critical behavior
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Spectral decomposition

Linear perturbations satisfy φ̈ =−Lφ , where L=− 1
tand−1 x ∂x

(
tand−1 x∂x

)

is essentially self-adjoint on L2([0,π/2], tandxdx)

Eigenvalues and eigenmodes of L

ω
2
n = (d+2n)2, en(x) = Nn cosdxP( d−2

2 , d
2 )

n (cos2x)

The linearized perturbations are nondispersive

Let us define projections Φn := (
√

AΦ,e′n), Πn := (
√

AΠ,en). Then

M =

π/2∫

0

(
AΦ

2 +AΠ
2) tan2xdx =

∞

∑
n=0

En(t)

where En := Π2
n +ω−2

n Φ2
n is the energy of the n-th mode
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Heuristic picture
The linear spectrum is fully resonant. Nonlinear interactions between
harmonics give rise to transfer of energy from low to high frequencies.

The turbulent cascade leads to concentration of energy on finer and finer
spatial scales so eventually a black hole is expected to form.
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Weakly turbulent instability of AdS3
Dimensionless measure of gravity’s strength is GM/Ld−2

so in d = 2 the total mass matters (not its concentration)
AdS-Schwarzschild family in d = 2

g =−Adt2 +A−1dr2 + r2 dϕ
2 , A = 1−M+ r2/l2

Mass gap between AdS3 (M = 0) and the lightest black hole (M = 1)
Thus, small perturbations of AdS3 cannot form black holes

Conjecture (B-Jałmużna 2013)
Small smooth perturbations of AdS3 remain smooth for all times but their
radius of analyticity shrinks to zero as t→ ∞.

Evidence: analyticity strip method (Sulem-Sulem-Frisch 1984). Idea:
I Extend the solution φ(t,x) to complex values of x and determine the

imaginary part ρ of a complex singularity nearest to the real axis.
I Tracing the time evolution of ρ(t) one can predict or exclude blowup
I The value of ρ is encoded in the asymptotic behavior of Fourier coefficients

of φ(t,x) which decay as exp(−ρk) for large k.
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Energy spectrum in 2+1 dimensions
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Similar weakly turbulent loss of regularity has been well known in fluid
dynamics (example: incompressible Euler equation in 2d, Yudovich 1974)
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Some follow-up studies and open questions

Turbulent instability is absent for some initial data (stability islands).
In particular, there exist stable time-periodic solutions bifurcating from
the eigenmodes (Maliborski-Rostworowski ’13)

Similar phenomenology found for the vacuum Einstein equations in 4+1
dimensions within the biaxial Bianchi IX ansatz (B-Rostworowski ’14)

Proof of instability of AdS for Einstein-null dust system (Moschidis ’17)

What happens outside spherical symmetry? It is not clear at all if the
putative endstate of instability - Kerr-AdS black hole - is stable itself.
Key issue: stable trapping of waves with large angular momentum `:
I quasinormal modes decay as e−Γ`t where Γ` ∼ e−c` (Gannot 2011)
I linear perturbations decay as 1/ log(t) for t→∞ (Holzegel-Smulevici 2013)

Is extrapolation of numerical results to arbitrarily small perturbations
justified?

Resonant approximation: new approach proposed by Balasubramanian
et al. and Craps-Evnin-Vanhoof ’14.
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Broader perspective: spatially confined nonlinear waves

Unbounded domain

System settles down to equilibrium
via dissipation of energy by dispersion

Bounded domain

Waves keep interacting for all times,
generating out-of-equilibrium dynamics

Understanding of long-time behavior of nonlinear waves in spatially confined
systems is challenging. Key questions:

How the energy injected into the system gets distributed over the degrees
of freedom during the evolution?

Can the energy flow to arbitrarily high frequencies?
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Examples of spatially confined systems

Nonlinear string

φtt−φxx +φ
3 = 0, φ(t,0) = φ(t,π) = 0

Cubic Klein-Gordon equation on R×S3

�gφ −m2
φ −φ

3 = 0, g =−dt2 +dω
2
S3

Einstein-massless-scalar system with negative cosmological constant

Rµν +
d
l2

gµν = ∂µφ∂νφ

Gross-Pitaevskii equation with isotropic harmonic potential

i∂tψ =−∆ψ + |x|2ψ +g|ψ|2ψ
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General strategy

For a spatially confined system, the associated linearized system has a
purely discrete spectrum of frequencies

Expanding solutions in the basis of linear eigenstates one transforms the
original PDE into an infinite-dimensional dynamical system with discrete
degrees of freedom (‘modes’).

The nonlinearity generates new frequencies that may lead to resonances
between the modes. The resonances dominate the transfer of energy.

Dropping all nonresonant terms from the Hamiltonian one obtains a
simplified infinite-dimensional dynamical system, called the resonant
system, which accurately approximates the dynamics of small amplitude
solutions of the original PDE on long time scales

Strategy: try to understand the dynamics of the resonant system and then
export this knowledge to the original PDE.
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Example
Background geometry: the Einstein cylinder M = R×S3 with metric

g =−dt2 +dx2 + sin2xdω
2, (t,x,ω) ∈ R× [0,π]×S2

This spacetime has constant scalar curvature R(g) = 6.

On M we consider a real scalar field φ satisfying
(
�g−

1
6

R(g)
)

φ −φ
3 =�gφ −φ −φ

3 = 0 .

We assume that φ = φ(t,x). Then, v(t,x) = sin(x)φ(t,x) satisfies

vtt− vxx +
v3

sin2 x
= 0

with Dirichlet boundary conditions v(t,0) = v(t,π) = 0.

Linear eigenstates: en(x) =
√

2
π

sin(ωnx) with ωn = n+1 (n = 0,1,2, ...)
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Time averaging
Expanding v(t,x) =

∞

∑
n=0

cn(t)en(x) we get

d2cn

dt2 +ω
2
n cn =−∑

jkl
Snjkl cjckcl, Sjkln =

∫
π

0

dx
sin2 x

en(x)ej(x)ek(x)el(x)

Using variation of constants

cn = βneiωnt + β̄ne−iωnt,
dcn

dt
= iωn

(
βneiωnt− β̄ne−iωnt)

we factor out fast oscillations

2iωn
dβn

dt
=−∑

jkl
Snjkl cjckcl e−iωnt,

Each term in the sum has a factor e−iΩt, where Ω = ωn±ωj±ωk±ωl.
The terms with Ω = 0 correspond to resonant interactions.

Let τ = ε2t and βn(t) = εαn(τ). For ε → 0 the non-resonant terms
∝ e−iΩτ/ε2

are rapidly oscillating and therefore negligible.
19 / 24



Resonant system

Keeping only the resonant terms one obtains
(B-Craps-Evnin-Hunik-Luyten-Maliborski ’16)

iωn
dαn

dτ
=

∞

∑
j=0

n+j

∑
k=0

Snjk,n+j−k ᾱjαkαn+j−k ,

where Snjk,n+j−k = min{n, j,k,n+ j− k}+1

This system (called the conformal cubic flow) provides an approximation
to the conformal cubic wave equation on the timescale ∼ ε−2

Since AdS4 is conformal to R×S3
+, this resonant system also

approximates the conformal wave equation on AdS4

The resonant system for radial scalar perturbations of AdSd+1 has
the same form (Balasubramanian et al. ’14, Craps-Evnin-Vanhoof ’14)
but the interaction coefficients Snjkl are very complicated.
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Solutions of cubic resonant systems

iωn
dαn

dτ
=

∞

∑
j=0

n+j

∑
k=0

Snjk,n+j−k ᾱjαkαn+j−k ,

Such systems are invariant under scaling

αn(τ)→ εαn(ε
2
τ)

thus they provide access to the regime of arbitrarily small perturbations

Thanks to enhanced symmetries, the resonant systems are often
amenable to rigorous analysis (sometimes explicit solutions can be found)

Key question: can energy be transferred to arbitrarily high modes?

Can Sobolev norms ‖α(τ)‖hs := ∑
∞
n=0(n+1)2s|αn(τ)|2 with s > 1

become unbounded in finite time (strong turbulence) or infinite time
(weak turbulence)?
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Oscillatory blowup in the AdS resonant system

Asymptotics for large n

|αn(τ)| ∼ n−β (τ)e−ρ(τ)n

where ρ is the “analyticity radius”. If limτ→τ∗ ρ(τ) = 0 for some τ∗ < ∞

then the solution becomes singular

There is analytic-numerical evidence (B-Maliborski-Rostworowski ’15)
that for typical initial data ρ(τ) hits zero in finite time τ∗ and

d
dτ

arg(αn)∼ ln(τ∗− τ) for τ ↗ τ∗

This indicates that the corresponding solutions of the full Einstein-scalar
system collapse on the timescale O(ε−2) and hints at a possible route to
proving the AdS instability conjecture.
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Instability on timescale 1/ε2 is captured by the resonant approximation!
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Conclusions

Dynamics of asymptotically AdS spacetimes is an interesting meeting
point of fundamental problems in general relativity, PDE theory, and
theory of turbulence. Understanding of these connections is at its infancy.

There is good evidence that AdS spacetime is unstable against arbitrarily
small perturbations (for no-flux boundary conditions at I ).

Understanding of the out-of-equilibrium dynamics of small solutions is
mathematically challenging even for the simplest nonlinear wave
equations on compact manifolds, let alone Einstein’s equations.
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