
From AdS to BEC
(dynamics in spatially confined Hamiltonian systems)

Piotr Bizoń
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Unbounded domain

System settles down to equilibrium
via dissipation of energy by dispersion

Bounded domain

Waves keep interacting for all times,
generating out-of-equilibrium dynamics

Understanding of long-time behavior of nonlinear waves in spatially confined
systems is challenging. Key questions:

How the energy injected into the system gets distributed over the degrees
of freedom during the evolution?

Can the energy flow to arbitrarily high frequencies (weak turbulence)?
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Examples of spatially confined systems

Nonlinear string

φtt−φxx +φ
3 = 0, φ(t,0) = φ(t,π) = 0

Cubic Klein-Gordon equation on R×S3

�gφ −m2
φ −φ

3 = 0, g =−dt2 +dω
2
S3

Einstein-massless-scalar system with negative cosmological constant

Rµν +λgµν = ∂µφ∂νφ , λ =
d
l2

2d Gross-Pitaevskii equation with isotropic harmonic potential

i∂tΨ =
1
2
(
−∂

2
x −∂

2
y + x2 + y2)

Ψ+g|Ψ|2Ψ
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General strategy

For a spatially confined system, the associated linearized system has a
purely discrete spectrum of frequencies

Expanding solutions in the basis of linear eigenstates one transforms the
original PDE into an infinite-dimensional dynamical system with discrete
degrees of freedom (‘modes’).

The nonlinearity generates new frequencies that may lead to resonances
between the modes. The resonances dominate the transfer of energy.

Dropping all nonresonant terms from the Hamiltonian one obtains a
simplified infinite-dimensional dynamical system, called the resonant
system, which accurately approximates the dynamics of small amplitude
solutions of the original PDE on long time scales

Strategy: try to understand the dynamics of the resonant system and then
export this knowledge to the original PDE.
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Example
Background geometry: the Einstein cylinder M = R×S3 with metric

g =−dt2 +dx2 + sin2xdω
2, (t,x,ω) ∈ R× [0,π]×S2

This spacetime has constant scalar curvature R(g) = 6.

On M we consider a real scalar field φ satisfying
(
�g−

1
6

R(g)
)

φ −φ
3 =�gφ −φ −φ

3 = 0 .

We assume that φ = φ(t,x). Then, v(t,x) = sin(x)φ(t,x) satisfies

vtt− vxx +
v3

sin2 x
= 0

with Dirichlet boundary conditions v(t,0) = v(t,π) = 0.

Linear eigenstates: en(x) =
√

2
π

sin(ωnx) with ωn = n+1 (n = 0,1,2, ...)
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Time averaging
Expanding v(t,x) =

∞

∑
n=0

cn(t)en(x) we get

d2cn

dt2 +ω
2
n cn =−∑

jkl
Cnjkl cjckcl, Cjkln =

∫
π

0

dx
sin2 x

en(x)ej(x)ek(x)el(x)

Using variation of constants

cn = βneiωnt + β̄ne−iωnt,
dcn

dt
= iωn

(
βneiωnt− β̄ne−iωnt)

we factor out fast oscillations

2iωn
dβn

dt
=−∑

jkl
Cnjkl cjckcl e−iωnt,

Each term in the sum has a factor e−iΩt, where Ω = ωn±ωj±ωk±ωl.
The terms with Ω = 0 correspond to resonant interactions.

Let τ = ε2t and βn(t) = εαn(τ). For ε → 0 the non-resonant terms
∝ e−iΩτ/ε2

are highly oscillatory and therefore negligible.
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Resonant system
Keeping only the resonant terms and rescaling αn→ αn/

√
ωn,

we obtain (B-Craps-Evnin-Hunik-Luyten-Maliborski, 2016)

i
dαn

dτ
=

∞

∑
j=0

n+j

∑
k=0

Snjk,n+j−k ᾱjαkαn+j−k ,

where Snjk,n+j−k =
min{n,j,k,n+j−k}+1√

(n+1)(j+1)(k+1)(n+j−k+1)
.

This system (called the conformal cubic flow) provides an accurate
approximation to the cubic wave equation on the timescale ∼ ε−2.

This is a Hamiltonian system

i
dαn

dτ
=

∂H
∂ ᾱn

with

H =
1
2

∞

∑
n=0

∞

∑
j=0

n+j

∑
k=0

Snjk,n+j−kᾱnᾱjαkαn+j−k
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Other Hamiltonian systems of the form

i
dαn

dτ
=

∞

∑
j=0

n+j

∑
k=0

Snjk,n+j−k ᾱjαkαn+j−k

Cubic Szegő equation Snjkl = 1 (Gérard-Grellier, 2010)

Lowest Landau Level (LLL) equation: resonant system for the maximally
rotating Bose-Einstein condensate (Germain-Hani-Thomann, 2015)

Snjkl =
(n+ j)!

2n+j
√

n!j!k!l!

Resonant system for radial scalar perturbations of AdSd+1 spacetime
(Balasubramanian et al., Craps-Evnin-Vanhoof, 2014)

Schrödinger-Newton-Hooke (SNH) system: resonant system for
a non-relativistic self-gravitating condensate (B-Evnin-Ficek, 2017)

8 / 19



Basic properties of the systems of the form

i
dαn

dτ
=

∞

∑
j=0

n+j

∑
k=0

Snjk,n+j−k ᾱjαkαn+j−k

Symmetries

Scaling: αn(t)→ εαn(ε
2t)

Global phase shift: αn(t)→ eiθ
αn(t)

Local phase shift: αn(t)→ einθ
αn(t)

Conserved quantities

N =
∞

∑
n=0
|αn|2, Q =

∞

∑
n=0

(n+1)|αn|2

The Szegő, conformal, and LLL flows are locally (and therefore also
globally) well-posed for initial data with finite J.

For Einstein-scalar-AdS resonant system there is evidence that solutions
may become singular in finite time.
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Finite-dimensional invariant manifolds

For one-mode initial data αn(0) = δnN , the solution is αn(τ) = δnNe−iλNτ

Three-dimensional invariant manifolds: α0 = b and for n≥ 1

αn =





apn Szegő flow
√

n+1(bp+an)pn−1 cubic conformal flow
1√
n!
(bp+an)pn−1 LLL flow

where the functions a(τ),b(τ),p(τ) are complex-valued.

The dynamics of these invariant manifolds is described by the reduced
Hamiltonian systems

da
dτ

= f1(a,b,p),
db
dτ

= f2(a,b,p),
dp
dτ

= f3(a,b,p)

Since there are three conserved quanities N, Q, and H (that are in
involution), the reduced systems are completely integrable.
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Anti-de Sitter spacetime in d+1 dimensions

Manifold M = {t ∈ R,x ∈ [0,π/2),ω ∈ Sd−1} with metric

g =
l2

cos2x

(
−dt2 +dx2 + sin2xdω

2
Sd−1

)

Solution of the vacuum Einstein equations Rαβ = λgαβ with λ =−d/l2.

Spatial infinity x = π/2 is the timelike
cylinder I = R×Sd−1 with the
boundary metric ds2

I =−dt2 +dΩ2
Sd−1

Null geodesics get to infinity in finite time

Asymptotically AdS spacetimes by
definition have the same conformal
boundary as AdS

AdS space is the unique ground state
among asymptotically AdS spacetimes.

?t

x = 0 x = π

2
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Conjecture (B-Rostworowski 2011)
AdSd+1, as the solution of the Einstein-massless-scalar field equations with
negative cosmological constant in d+1 dimensions (for d ≥ 3), is unstable
under arbitrarily small generic perturbations.

Arguments:

The linear spectrum is fully resonant. Nonlinear interactions between
harmonics give rise to transfer of energy from low to high frequencies.

The turbulent cascade leads to concentration of energy on finer and finer
spatial scales so eventually a black hole is expected to form.

Numerical evidence: perturbations of size ε collapse in time O(ε−2).

The shadow of a doubt: is extrapolation to ε → 0 justified?

Resonant approximation (B-Maliborski-Rostworowski, 2015):

Using mixed numerical/analytical methods we constructed solutions of
the resonant system that become singular in finite time.
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Instability on timescale 1/ε2 is captured by the resonant approximation!

On the other hand, resonances appear to play no role in the recent proof
of instability of AdS for the Einstein-null dust system (Moschidis, 2017)
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From Klein-Gordon on AdS to Gross-Pitaevskii

AdS metric (r = l tanx)

g =−(1+ r2

l2
)dt2 +

dr2

1+ r2

l2
+ r2dω

2
Sd−1

Cubic Klein-Gordon equation on AdS

�gφ − m2c2

h̄2 φ −g|φ |2φ = 0

Substituting φ = e−i mc2
h̄ t

Ψ+ c.c. and taking the limits l→ ∞ and c→ ∞

such that c/l→ ω , one gets the Gross-Pitaevskii equation

ih̄∂tΨ =− h̄2

2m
∆Ψ+

1
2

mω
2r2

Ψ+
gh̄2

2m
|Ψ|2Ψ

(O. Evnin and G.W. Gibbons, private communication)
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Lowest Landau Level equation
2d Gross-Pitaevskii equation with isotropic harmonic potential

i∂tΨ =
1
2
(
−∂

2
x −∂

2
y + x2 + y2)

Ψ+g|Ψ|2Ψ

General solution of the linear problem (g = 0)

Ψ(t,r,φ) = ∑
nm

αnm e−iEnteimφ
χnm(r)

where eimφ χnm(r) are normalized eigenstates of energy En = n+1
and angular momentum m ∈ {−n,−n+2, ...,n−2,n}.

The lowest Landau level (LLL) consists of modes with m = n

χn(z) =
zn
√

πn!
e−

1
2 |z|

2
, z = x+ iy

The general LLL wavefunction in the frame rotating with angular velocity 1
(where centrifugal and harmonic forces are balanced) is (here τ = gt)

ψ(τ,z) := eit
Ψ(t,eitz) =

∞

∑
n=0

αn(τ)χn(z),
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Vortices in BEC

A remarkable feature of BEC is the nucleation of quantized vortices when
the condensate is stirred above a certain critical angular velocity

The 3-dimensional invariant manifold of the LLL flow corresponds to
single-vortex configurations

ψ(τ,z) = (b(τ)+a(τ)z)ep(τ)z e−
1
2 |z|

2

The generic explicit solution
represents periodically modulated
precession of the vortex

Motions of this type have been
seen in experiments

It would be very interesting to
extend this approach to
multi-vortex configurations

-2 -1 0 1 2
-2

-1

0

1

2

Biasi-B-Craps-Evnin, 2017
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Schrödinger-Newton-Hooke system
Einstein-Klein-Gordon system in 3+1 dimensions with negative
cosmological constant Λ =−3/l2

Gαβ +Λgαβ =
8πG
c4 Tαβ ,

(
�g−

m2c2

h̄2

)
φ = 0,

where

Tαβ = ∂αφ ∂β φ − 1
2

(
gµν

∂µφ ∂νφ +
m2c2

h̄2 φ
2
)

gαβ

Substituting φ = e−i mc2
h̄ t

ψ + c.c. and taking the limits c→ ∞ and l→ ∞

so that c/l→ ω , we get the SNH system

ih̄∂tψ =− h̄2

2m
∆ψ +

1
2

mω
2|x|2ψ +Vψ, ∆V = 4πGm2|ψ|2

which is equivalent to the Hartree equation with the external harmonic
potential (below we set h̄ = m = G = 1)

i∂tψ =−1
2

∆ψ +
1
2

ω
2|x|2ψ−

(
|x|−1 ∗ |ψ|2

)
ψ
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In higher dimensions d ≥ 3 the SNH equation reads

i∂tψ =−1
2

∆ψ +
1
2

ω
2|x|2ψ−

(
|x|−(d−2) ∗ |ψ|2

)
ψ

Under scaling ψ(t,x) 7→ ψλ (t,x) = λ−2ψ(t/λ 2,x/λ )

‖ψλ‖L2 = λ
d−4

2 ‖ψ‖L2 and ‖∇ψλ‖L2 = λ
d−6

2 ‖∇ψ‖L2

hence the system is L2-critical for d = 4 and energy critical for d = 6

For d = 4 the associated resonant system has a three-dimensional
invariant manifold on which the dynamics is completely integrable

In supercritical dimensions d ≥ 7 we expect a weakly turbulent instability
of the zero solution (analogue of AdS instability)

This expectation is consonant with the ultraviolet asymptotics of the
interaction coefficients Snnnn ∼ nd−6 for n→ ∞
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Conclusions

Dynamics of spatially confined Hamiltonian systems is an interesting
meeting point of fundamental problems in PDEs and various areas of
nonlinear physics

Despite recent progress, this research area remains largely unexplored

Thank you for your attention
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